mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-08 20:40:34 +00:00
[shardformer] support whisper (#4212)
* support whisper * fix bug in vocabembedding * support downstream model of whisper * update readme
This commit is contained in:
@@ -102,7 +102,7 @@ We will follow this roadmap to develop Shardformer:
|
||||
- [ ] SwinTransformer
|
||||
- [ ] SwinTransformer V2
|
||||
- [ ] Audio
|
||||
- [ ] Whisper
|
||||
- [x] Whisper
|
||||
- [ ] Multi-modal
|
||||
- [ ] To be added
|
||||
|
||||
|
@@ -202,7 +202,6 @@ class VocabParallelEmbedding1D(ParallelModule):
|
||||
super().__init__()
|
||||
self.num_embeddings = num_embeddings
|
||||
self.embedding_dim = embedding_dim
|
||||
self.padding_idx = padding_idx
|
||||
self.embed_args = args
|
||||
self.embed_kwargs = kwargs
|
||||
self.process_group = process_group
|
||||
@@ -276,6 +275,15 @@ class VocabParallelEmbedding1D(ParallelModule):
|
||||
with torch.no_grad():
|
||||
self.weight[self.padding_idx - self.vocab_start_index].fill_(0)
|
||||
|
||||
def _select_padding_idx(self, padding_idx: int):
|
||||
# select padding index according to the rank
|
||||
if padding_idx is None:
|
||||
return None
|
||||
elif padding_idx < self.vocab_end_index and padding_idx >= self.vocab_start_index:
|
||||
return padding_idx - self.vocab_start_index
|
||||
else:
|
||||
return None
|
||||
|
||||
def forward(self, input_: Tensor) -> Tensor:
|
||||
# Build the mask.
|
||||
input_mask = (input_ < self.vocab_start_index) | (input_ >= self.vocab_end_index)
|
||||
|
@@ -105,6 +105,14 @@ _POLICY_LIST = {
|
||||
"transformers.models.bloom.modeling_bloom.BloomForQuestionAnswering":
|
||||
PolicyLocation(file_name="bloom", class_name="BloomForQuestionAnsweringPolicy"),
|
||||
|
||||
# Whisper
|
||||
"transformers.models.whisper.modeling_whisper.WhisperModel":
|
||||
PolicyLocation(file_name="whisper", class_name="WhisperModelPolicy"),
|
||||
"transformers.models.whisper.modeling_whisper.WhisperForConditionalGeneration":
|
||||
PolicyLocation(file_name="whisper", class_name="WhisperForConditionalGenerationPolicy"),
|
||||
"transformers.models.whisper.modeling_whisper.WhisperForAudioClassification":
|
||||
PolicyLocation(file_name="whisper", class_name="WhisperForAudioClassificationPolicy"),
|
||||
|
||||
# Sam
|
||||
"transformers.models.sam.modeling_sam.SamModel":
|
||||
PolicyLocation(file_name="sam", class_name="SamModelPolicy"),
|
||||
|
232
colossalai/shardformer/policies/whisper.py
Normal file
232
colossalai/shardformer/policies/whisper.py
Normal file
@@ -0,0 +1,232 @@
|
||||
import torch.nn as nn
|
||||
|
||||
import colossalai.shardformer.layer as col_nn
|
||||
|
||||
from .._utils import getattr_, setattr_
|
||||
from .basepolicy import ModulePolicyDescription, Policy, SubModuleReplacementDescription
|
||||
|
||||
__all__ = [
|
||||
'WhisperPolicy', 'WhisperModelPolicy', 'WhisperForConditionalGenerationPolicy', 'WhisperForAudioClassification'
|
||||
]
|
||||
|
||||
|
||||
class WhisperPolicy(Policy):
|
||||
|
||||
def config_sanity_check(self):
|
||||
pass
|
||||
|
||||
def preprocess(self):
|
||||
# reshape the embedding layer
|
||||
r"""
|
||||
Reshape the Embedding layer to make the embedding dimension divisible by world_size
|
||||
"""
|
||||
# TODO:
|
||||
vocab_size = self.model.config.vocab_size
|
||||
world_size = self.shard_config.tensor_parallel_size
|
||||
if vocab_size % world_size != 0:
|
||||
new_vocab_size = vocab_size + world_size - vocab_size % world_size
|
||||
self.model.resize_token_embeddings(new_vocab_size)
|
||||
return self.model
|
||||
|
||||
def module_policy(self):
|
||||
from transformers.models.whisper.modeling_whisper import (
|
||||
WhisperDecoder,
|
||||
WhisperDecoderLayer,
|
||||
WhisperEncoder,
|
||||
WhisperEncoderLayer,
|
||||
)
|
||||
|
||||
policy = {}
|
||||
|
||||
if self.shard_config.enable_tensor_parallelism:
|
||||
policy[WhisperEncoderLayer] = ModulePolicyDescription(attribute_replacement={
|
||||
"self_attn.embed_dim":
|
||||
self.model.config.d_model // self.shard_config.tensor_parallel_size,
|
||||
"self_attn.num_heads":
|
||||
self.model.config.encoder_attention_heads // self.shard_config.tensor_parallel_size,
|
||||
},
|
||||
sub_module_replacement=[
|
||||
SubModuleReplacementDescription(
|
||||
suffix="self_attn.q_proj",
|
||||
target_module=col_nn.Linear1D_Col,
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="self_attn.k_proj",
|
||||
target_module=col_nn.Linear1D_Col,
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="self_attn.v_proj",
|
||||
target_module=col_nn.Linear1D_Col,
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="self_attn.out_proj",
|
||||
target_module=col_nn.Linear1D_Row,
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="fc1",
|
||||
target_module=col_nn.Linear1D_Col,
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="fc2",
|
||||
target_module=col_nn.Linear1D_Row,
|
||||
),
|
||||
])
|
||||
|
||||
policy[WhisperDecoderLayer] = ModulePolicyDescription(attribute_replacement={
|
||||
"self_attn.embed_dim":
|
||||
self.model.config.d_model // self.shard_config.tensor_parallel_size,
|
||||
"self_attn.num_heads":
|
||||
self.model.config.decoder_attention_heads // self.shard_config.tensor_parallel_size,
|
||||
"encoder_attn.embed_dim":
|
||||
self.model.config.d_model // self.shard_config.tensor_parallel_size,
|
||||
"encoder_attn.num_heads":
|
||||
self.model.config.encoder_attention_heads // self.shard_config.tensor_parallel_size,
|
||||
},
|
||||
sub_module_replacement=[
|
||||
SubModuleReplacementDescription(
|
||||
suffix="self_attn.q_proj",
|
||||
target_module=col_nn.Linear1D_Col,
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="self_attn.k_proj",
|
||||
target_module=col_nn.Linear1D_Col,
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="self_attn.v_proj",
|
||||
target_module=col_nn.Linear1D_Col,
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="self_attn.out_proj",
|
||||
target_module=col_nn.Linear1D_Row,
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="encoder_attn.q_proj",
|
||||
target_module=col_nn.Linear1D_Col,
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="encoder_attn.k_proj",
|
||||
target_module=col_nn.Linear1D_Col,
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="encoder_attn.v_proj",
|
||||
target_module=col_nn.Linear1D_Col,
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="encoder_attn.out_proj",
|
||||
target_module=col_nn.Linear1D_Row,
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="fc1",
|
||||
target_module=col_nn.Linear1D_Col,
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="fc2",
|
||||
target_module=col_nn.Linear1D_Row,
|
||||
),
|
||||
])
|
||||
|
||||
policy[WhisperDecoder] = ModulePolicyDescription(sub_module_replacement=[
|
||||
SubModuleReplacementDescription(
|
||||
suffix="embed_tokens",
|
||||
target_module=col_nn.VocabParallelEmbedding1D,
|
||||
),
|
||||
])
|
||||
|
||||
# optimization configuration
|
||||
if self.shard_config.enable_fused_normalization:
|
||||
# Handle encoder layer
|
||||
self.append_or_create_submodule_replacement(description=[
|
||||
SubModuleReplacementDescription(
|
||||
suffix="self_attn_layer_norm",
|
||||
target_module=col_nn.FusedLayerNorm,
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="final_layer_norm",
|
||||
target_module=col_nn.FusedLayerNorm,
|
||||
)
|
||||
],
|
||||
policy=policy,
|
||||
target_key=WhisperEncoderLayer)
|
||||
|
||||
# Handle decoder layer
|
||||
self.append_or_create_submodule_replacement(description=[
|
||||
SubModuleReplacementDescription(
|
||||
suffix="self_attn_layer_norm",
|
||||
target_module=col_nn.FusedLayerNorm,
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="final_layer_norm",
|
||||
target_module=col_nn.FusedLayerNorm,
|
||||
)
|
||||
],
|
||||
policy=policy,
|
||||
target_key=WhisperDecoderLayer)
|
||||
|
||||
# handle encoder layer
|
||||
self.append_or_create_submodule_replacement(description=[
|
||||
SubModuleReplacementDescription(
|
||||
suffix="layer_norm",
|
||||
target_module=col_nn.FusedLayerNorm,
|
||||
)
|
||||
],
|
||||
policy=policy,
|
||||
target_key=WhisperEncoder)
|
||||
|
||||
# handle decoder layer
|
||||
self.append_or_create_submodule_replacement(description=[
|
||||
SubModuleReplacementDescription(
|
||||
suffix="layer_norm",
|
||||
target_module=col_nn.FusedLayerNorm,
|
||||
)
|
||||
],
|
||||
policy=policy,
|
||||
target_key=WhisperDecoder)
|
||||
return policy
|
||||
|
||||
def add_lm_head_policy(self, base_policy):
|
||||
from transformers.models.whisper.modeling_whisper import WhisperForConditionalGeneration
|
||||
|
||||
# optimize for tensor parallelism
|
||||
if self.shard_config.enable_tensor_parallelism:
|
||||
self.append_or_create_submodule_replacement(description=SubModuleReplacementDescription(
|
||||
suffix="proj_out", target_module=col_nn.Linear1D_Col, kwargs={"gather_output": True}),
|
||||
policy=base_policy,
|
||||
target_key=WhisperForConditionalGeneration)
|
||||
|
||||
return base_policy
|
||||
|
||||
def postprocess(self):
|
||||
return self.model
|
||||
|
||||
|
||||
# WhisperModel
|
||||
class WhisperModelPolicy(WhisperPolicy):
|
||||
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
|
||||
|
||||
# WhisperForConditionalGeneration
|
||||
class WhisperForConditionalGenerationPolicy(WhisperPolicy):
|
||||
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
|
||||
def module_policy(self):
|
||||
module_policy = super().module_policy()
|
||||
module_policy = self.add_lm_head_policy(module_policy)
|
||||
return module_policy
|
||||
|
||||
def postprocess(self):
|
||||
binding_map = {"model.decoder.embed_tokens.weight": "proj_out.weight"}
|
||||
for k, v in binding_map.items():
|
||||
param = getattr_(self.model, k)
|
||||
setattr_(self.model, v, param)
|
||||
return self.model
|
||||
|
||||
|
||||
# WhisperForAudioClassification
|
||||
class WhisperForAudioClassificationPolicy(WhisperPolicy):
|
||||
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
Reference in New Issue
Block a user