[shardformer] support whisper (#4212)

* support whisper

* fix bug in vocabembedding

* support downstream model of whisper

* update readme
This commit is contained in:
FoolPlayer
2023-07-17 14:25:32 +08:00
committed by Hongxin Liu
parent dd2bf02679
commit 9ee4ebea83
7 changed files with 443 additions and 2 deletions

View File

@@ -7,3 +7,4 @@ from .opt import *
from .sam import *
from .t5 import *
from .vit import *
from .whisper import *

View File

@@ -0,0 +1,91 @@
import torch
import transformers
from ..registry import ModelAttribute, model_zoo
# ===============================
# Register single-sentence Whisper
# ===============================
# define data gen function
def data_gen():
# Generated from following code snippet
#
# from transformers import AutoFeatureExtractor, WhisperModel
# from datasets import load_dataset
# model = WhisperModel.from_pretrained("openai/whisper-base")
# feature_extractor = AutoFeatureExtractor.from_pretrained("openai/whisper-base")
# ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
# inputs = feature_extractor(ds[0]["audio"]["array"], return_tensors="pt")
# input_features = inputs.input_features
# decoder_input_ids = torch.tensor([[1, 1]]) * model.config.decoder_start_token_id
input_features = torch.randn(1, 80, 3000)
decoder_input_ids = torch.tensor([[1, 1]]) * 50258
return dict(input_features=input_features, decoder_input_ids=decoder_input_ids)
def data_gen_for_conditional_generation():
# labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
# Labels for computing the language modeling loss. Indices should either be in `[0, ..., config.vocab_size]`
# or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is
# only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
data = data_gen()
data['labels'] = torch.tensor([[0, 1]], dtype=torch.int64)
return data
def data_gen_for_audio_classification():
# labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
# Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
# config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
# `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
# `WhisperForAudioClassification` does not need `decoder_input_ids`
data = data_gen()
data.pop('decoder_input_ids')
data['labels'] = torch.tensor([1], dtype=torch.int64)
return data
# define output transform function
output_transform_fn = lambda x: x
# define loss funciton
loss_fn = lambda x: x.last_hidden_state.mean()
loss_fn_attr = lambda x: x.loss
config = transformers.WhisperConfig(
classifier_proj_size=256,
d_model=256,
decoder_attention_heads=4,
decoder_ffn_dim=1536,
decoder_layers=2,
encoder_attention_heads=4,
encoder_ffn_dim=1536,
encoder_layers=2,
vocab_size=51866,
)
# register the Whisper variants
model_zoo.register(name='transformers_whisper',
model_fn=lambda: transformers.WhisperModel(config),
data_gen_fn=data_gen,
output_transform_fn=output_transform_fn,
loss_fn=loss_fn,
model_attribute=ModelAttribute(has_control_flow=True))
model_zoo.register(name='transformers_whisperForConditionalGeneration',
model_fn=lambda: transformers.WhisperForConditionalGeneration(config),
data_gen_fn=data_gen_for_conditional_generation,
output_transform_fn=output_transform_fn,
loss_fn=loss_fn_attr,
model_attribute=ModelAttribute(has_control_flow=True))
model_zoo.register(name='transformers_whisperWhisperForAudioClassification',
model_fn=lambda: transformers.WhisperForAudioClassification(config),
data_gen_fn=data_gen_for_audio_classification,
output_transform_fn=output_transform_fn,
loss_fn=loss_fn_attr,
model_attribute=ModelAttribute(has_control_flow=True))

View File

@@ -0,0 +1,101 @@
import pytest
import torch
import colossalai
from colossalai.logging import disable_existing_loggers
from colossalai.tensor.d_tensor.api import is_customized_distributed_tensor, is_distributed_tensor
from colossalai.testing import (
assert_hf_output_close,
clear_cache_before_run,
parameterize,
rerun_if_address_is_in_use,
spawn,
)
from tests.kit.model_zoo import model_zoo
from tests.test_shardformer.test_model._utils import build_model, run_forward
def check_forward_backward(org_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn):
# check forward
org_output, org_loss, shard_output, shard_loss = run_forward(org_model, sharded_model, data_gen_fn,
output_transform_fn, loss_fn)
assert_hf_output_close(org_output, shard_output, ignore_keys='past_key_values')
# do backward
org_loss.backward()
shard_loss.backward()
assert torch.allclose(org_loss, shard_loss,
atol=1e-5), f"shard model loss is not equal to orgin model loss\n{org_loss}\n{shard_loss}"
# check grad
if org_model.__class__.__name__ == 'WhisperForConditionalGeneration':
whisper = org_model.model
sharded_whisper = sharded_model.model
else:
whisper = org_model
sharded_whisper = sharded_model
# compare self attention grad
org_grad = whisper.encoder.layers[0].self_attn.q_proj.weight.grad
shard_grad = sharded_whisper.encoder.layers[0].self_attn.q_proj.weight.grad
shard_weight = sharded_whisper.encoder.layers[0].self_attn.q_proj.weight
if is_distributed_tensor(shard_weight) or is_customized_distributed_tensor(shard_weight):
shard_grad_list = [torch.zeros([*shard_grad.shape]).to('cuda') for _ in range(2)]
shard_grad = torch.distributed.all_gather(shard_grad_list, shard_grad)
all_shard_grad = torch.cat(shard_grad_list, dim=0)
else:
all_shard_grad = shard_grad
assert torch.allclose(org_grad, all_shard_grad,
atol=1e-5), f"shard model grad is not equal to orgin model grad\n{org_grad}\n{all_shard_grad}"
# WhisperForAudioClassification does not have decoder and embedding layer
if org_model.__class__.__name__ == 'WhisperForAudioClassification':
return
# compare embedding grad
org_grad = whisper.decoder.embed_tokens.weight.grad
shard_grad = sharded_whisper.decoder.embed_tokens.weight.grad
shard_weight = sharded_whisper.decoder.embed_tokens.weight
if is_distributed_tensor(shard_weight) or is_customized_distributed_tensor(shard_weight):
shard_grad_list = [torch.zeros([*shard_grad.shape]).to('cuda') for _ in range(2)]
shard_grad = torch.distributed.all_gather(shard_grad_list, shard_grad)
all_shard_grad = torch.cat(shard_grad_list, dim=0)
else:
all_shard_grad = shard_grad
assert torch.allclose(org_grad, all_shard_grad,
atol=1e-5), f"shard model grad is not equal to orgin model grad\n{org_grad}\n{all_shard_grad}"
@parameterize('enable_fused_normalization', [True, False])
@parameterize('enable_tensor_parallelism', [True, False])
def run_whisper_test(enable_fused_normalization, enable_tensor_parallelism):
sub_model_zoo = model_zoo.get_sub_registry('transformers_whisper')
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
org_model, sharded_model = build_model(model_fn,
enable_fused_normalization=enable_fused_normalization,
enable_tensor_parallelism=enable_tensor_parallelism)
check_forward_backward(org_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn)
torch.cuda.empty_cache()
def check_whisper(rank, world_size, port):
disable_existing_loggers()
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
run_whisper_test()
@pytest.mark.dist
@rerun_if_address_is_in_use()
@clear_cache_before_run()
def test_whisper():
spawn(check_whisper, 2)
if __name__ == "__main__":
test_whisper()