[feat[ Support one-behind to reduce bubble time. Add profiling code (#6353)

* support n_behind, add profiling

* fix bugs

* fix visualization

* fix behind

* fix loop issue

* add profiling

* fix update

* update assert

* remove assert

---------

Co-authored-by: Tong Li <tong.li35271158@gmail.com>
This commit is contained in:
YeAnbang 2025-06-30 13:21:08 +08:00 committed by GitHub
parent 8880b83791
commit b1f646c7e7
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
8 changed files with 365 additions and 82 deletions

View File

@ -6,6 +6,7 @@ import ray
import ray.util.collective as cc
import torch
import torch.distributed as dist
from coati.distributed.profiling_utils import CustomProfiler
from tqdm import tqdm
from transformers import AutoModelForCausalLM
@ -36,6 +37,8 @@ class BaseConsumer:
minibatch_size: int = 1,
save_interval: int = 100,
save_dir: str = "./model",
enable_profiling: bool = False,
n_behind: int = 0,
):
self.num_producers = num_producers
self.num_episodes = num_episodes
@ -49,6 +52,7 @@ class BaseConsumer:
self.minibatch_size = minibatch_size
self.save_interval = save_interval
self.save_dir = save_dir
self.enable_profiling = enable_profiling
assert batch_size % minibatch_size == 0, "batch_size should be divisible by microbatch_size"
self.num_microbatches = batch_size // minibatch_size
@ -57,6 +61,7 @@ class BaseConsumer:
self.device = get_current_device()
self.lr_scheduler = None
self.n_behind = n_behind
def setup(self) -> None:
launch(self.rank, self.world_size, self.master_addr, self.master_port, local_rank=0)
@ -94,6 +99,7 @@ class BaseConsumer:
self.buffer = []
self.recv_cnt = 0
self.profiler = CustomProfiler(f"C{self.rank}", disabled=not self.enable_profiling)
def state_dict(self) -> Dict[str, torch.Tensor]:
raise NotImplementedError
@ -101,6 +107,41 @@ class BaseConsumer:
def step(self, step_idx: int, **kwargs) -> Optional[float]:
raise NotImplementedError
def prepare_mini_batch(self, effective_group_to_raw_group_mapping: Dict[int, int]) -> Dict[str, torch.Tensor]:
"""
Prepare a mini-batch from the effective group to raw group mapping.
This method is used to create a mini-batch for training.
"""
batches = [
self.buffer[effective_group_to_raw_group_mapping[i]]
for i in range(self.dp_rank * self.minibatch_size, (self.dp_rank + 1) * self.minibatch_size)
]
# every dp_rank will receive a complete mini-batch, no need to sync within step() later
# each mini-batch use the first self.dp_size * minibatch_size effective samples
raw_mini_batches = self.buffer[
: effective_group_to_raw_group_mapping[self.dp_size * self.minibatch_size - 1] + 1
] # include the last effective sample
raw_mini_batches_metric_dict = {
"raw_train_mini_batch_reward": [t[1] for t in raw_mini_batches],
"raw_train_mini_batch_format_acc": [t[2] for t in raw_mini_batches],
"raw_train_mini_batch_ans_acc": [t[3] for t in raw_mini_batches],
"raw_train_mini_batch_response_len": [t[4] for t in raw_mini_batches],
}
batch = bind_batch([t[0] for t in batches])
batch = post_recv(batch)
return batch, raw_mini_batches_metric_dict
def calculate_effective_group_to_raw_group_mapping(self, step):
effective_group_to_raw_group_mapping = {}
for buffer_idx in range(len(self.buffer)):
if self.buffer[buffer_idx][0] is not None:
if self.n_behind == 0:
effective_group_to_raw_group_mapping[len(effective_group_to_raw_group_mapping)] = buffer_idx
else:
if self.buffer[buffer_idx][-1] <= step - self.n_behind:
effective_group_to_raw_group_mapping[len(effective_group_to_raw_group_mapping)] = buffer_idx
return effective_group_to_raw_group_mapping
def loop(self) -> None:
print(
f"Consumer{self.rank} num_update: {self.num_update_per_episode}, num_recv: {self.num_recv_per_update}, nmb: {self.num_microbatches}"
@ -112,14 +153,53 @@ class BaseConsumer:
disable=self.rank != 0,
) as pbar:
for step in pbar:
torch.cuda.reset_peak_memory_stats()
i = 0
self.profiler.enter(f"rollout_episode_{episode}_step_{step}")
for _ in range(self.num_recv_per_update):
if self.n_behind > 0:
# after sync model, do not wait for more data to arrive as rollout takes time, use buffered data
effective_group_to_raw_group_mapping = self.calculate_effective_group_to_raw_group_mapping(
step=step
)
while len(effective_group_to_raw_group_mapping) >= self.dp_size * self.minibatch_size:
self.profiler.log(
f"Still have {len(effective_group_to_raw_group_mapping)} effective groups, greater than {self.dp_size * self.minibatch_size}, start training"
)
batch, raw_mini_batches_metric_dict = self.prepare_mini_batch(
effective_group_to_raw_group_mapping
)
self.profiler.enter("step")
loss = self.step(i, pbar, **batch, **raw_mini_batches_metric_dict)
self.profiler.exit("step")
self.buffer = self.buffer[
effective_group_to_raw_group_mapping[self.dp_size * self.minibatch_size - 1] + 1 :
]
# recalculate the effective group to raw group mapping
effective_group_to_raw_group_mapping_size_before = len(
effective_group_to_raw_group_mapping
)
effective_group_to_raw_group_mapping = (
self.calculate_effective_group_to_raw_group_mapping(step=step)
)
assert (
len(effective_group_to_raw_group_mapping)
== effective_group_to_raw_group_mapping_size_before
- self.dp_size * self.minibatch_size
)
if loss is not None:
pbar.set_postfix({"loss": loss})
i += 1
# receive data from producers
for r in range(self.num_producers):
print(f"[T{dist.get_rank()}] Recv data episode {episode} step {step} from {r}")
self.profiler.enter(f"recv_broadcast_data_P{r}")
raw_batch = ray_broadcast_tensor_dict(
None, src=0, device=self.device, group_name=f"sync_data_{r}"
)
self.profiler.exit(f"recv_broadcast_data_P{r}")
# calculate group reward et al. filtering. As only the filtered group will be used for training (which is incomplete),
# we need to calculate the metrics before filtering here for logging
# [batch_size, num_generations, ...] -> [batch_size * num_generations, ...]
@ -154,6 +234,7 @@ class BaseConsumer:
format_acc[group_idx],
ans_acc[group_idx],
response_len[group_idx],
step,
]
)
if effective_group_mask is not None:
@ -161,56 +242,44 @@ class BaseConsumer:
f"[T{dist.get_rank()}] Filter recv data: {len(raw_batch)} -> {torch.sum(effective_group_mask).cpu().item()} effective groups"
)
# mapping the effective group to the raw group for indexing
effective_group_to_raw_group_mapping = {}
for buffer_idx in range(len(self.buffer)):
if self.buffer[buffer_idx][0] is not None:
effective_group_to_raw_group_mapping[len(effective_group_to_raw_group_mapping)] = (
buffer_idx
)
effective_group_to_raw_group_mapping = self.calculate_effective_group_to_raw_group_mapping(
step=step
)
print(
f"[T{dist.get_rank()}] Collect Effective Prompt: {len(effective_group_to_raw_group_mapping)}/{self.dp_size * self.minibatch_size}"
)
while len(effective_group_to_raw_group_mapping) >= self.dp_size * self.minibatch_size:
# on each dp_rank, we use minibatch_size effective samples to form a batch
batches = [
self.buffer[effective_group_to_raw_group_mapping[i]]
for i in range(
self.dp_rank * self.minibatch_size, (self.dp_rank + 1) * self.minibatch_size
if self.n_behind == 0:
# If n_behind is 0, we start training after receiving data from producers.
while len(effective_group_to_raw_group_mapping) >= self.dp_size * self.minibatch_size:
self.profiler.log(
f"Collect {len(effective_group_to_raw_group_mapping)} effective groups, greater than {self.dp_size * self.minibatch_size}, start training"
)
]
# every dp_rank will receive a complete mini-batch, no need to sync within step() later
# each mini-batch use the first self.dp_size * minibatch_size effective samples
raw_mini_batches = self.buffer[
: effective_group_to_raw_group_mapping[self.dp_size * self.minibatch_size - 1] + 1
] # include the last effective sample
raw_mini_batches_metric_dict = {
"raw_train_mini_batch_reward": [t[1] for t in raw_mini_batches],
"raw_train_mini_batch_format_acc": [t[2] for t in raw_mini_batches],
"raw_train_mini_batch_ans_acc": [t[3] for t in raw_mini_batches],
"raw_train_mini_batch_response_len": [t[4] for t in raw_mini_batches],
}
batch = bind_batch([t[0] for t in batches])
batch = post_recv(batch)
loss = self.step(i, pbar, **batch, **raw_mini_batches_metric_dict)
self.buffer = self.buffer[
effective_group_to_raw_group_mapping[self.dp_size * self.minibatch_size - 1] + 1 :
]
# recalculate the effective group to raw group mapping
effective_group_to_raw_group_mapping_size_before = len(effective_group_to_raw_group_mapping)
effective_group_to_raw_group_mapping = {}
for buffer_idx in range(len(self.buffer)):
if self.buffer[buffer_idx][0] is not None:
effective_group_to_raw_group_mapping[len(effective_group_to_raw_group_mapping)] = (
buffer_idx
)
assert (
len(effective_group_to_raw_group_mapping)
== effective_group_to_raw_group_mapping_size_before - self.dp_size * self.minibatch_size
)
if loss is not None:
pbar.set_postfix({"loss": loss})
i += 1
batch, raw_mini_batches_metric_dict = self.prepare_mini_batch(
effective_group_to_raw_group_mapping
)
self.profiler.enter("step")
loss = self.step(i, pbar, **batch, **raw_mini_batches_metric_dict)
self.profiler.exit("step")
self.buffer = self.buffer[
effective_group_to_raw_group_mapping[self.dp_size * self.minibatch_size - 1] + 1 :
]
# recalculate the effective group to raw group mapping
effective_group_to_raw_group_mapping_size_before = len(
effective_group_to_raw_group_mapping
)
effective_group_to_raw_group_mapping = (
self.calculate_effective_group_to_raw_group_mapping(step=step)
)
assert (
len(effective_group_to_raw_group_mapping)
== effective_group_to_raw_group_mapping_size_before
- self.dp_size * self.minibatch_size
)
if loss is not None:
pbar.set_postfix({"loss": loss})
i += 1
if self.lr_scheduler is not None:
self.lr_scheduler.step()
if (step + 1) % self.save_interval == 0 or (step + 1) == self.num_update_per_episode:
@ -221,13 +290,16 @@ class BaseConsumer:
if self.rank == 0:
print(f"Saved model checkpoint at step {step + 1} in folder {save_path}")
if episode != self.num_episodes - 1 or step != self.num_update_per_episode - 1:
if (episode != self.num_episodes - 1 or step != self.num_update_per_episode - 1) and (
episode != 0 or step >= self.n_behind
):
if self.pp_size > 1:
print(
f"[T{dist.get_rank()}] Sync model PP stage {self.pp_rank} episode {episode} step {step}"
)
else:
print(f"[T{dist.get_rank()}] Sync model episode {episode} step {step}")
self.profiler.enter("sync_model")
torch.cuda.empty_cache()
state_dict = self.state_dict()
if self.pp_size > 1:
@ -245,6 +317,13 @@ class BaseConsumer:
)
del state_dict
torch.cuda.empty_cache()
self.profiler.exit("sync_model")
self.profiler.log(f"Peak memory usage: {torch.cuda.max_memory_allocated() / 1024 ** 2:.2f} MB")
self.profiler.exit(f"rollout_episode_{episode}_step_{step}")
def __del__(self):
if hasattr(self, "profiler"):
self.profiler.close()
@ray.remote

View File

@ -38,6 +38,8 @@ class GRPOConsumer(BaseConsumer):
project_name: str = None,
run_name: str = None,
wandb_group_name: str = None,
enable_profiling: bool = False,
n_behind: int = 0,
):
print(f"Using GRPO config: {grpo_config}")
if (
@ -63,6 +65,8 @@ class GRPOConsumer(BaseConsumer):
minibatch_size,
save_interval=save_interval,
save_dir=save_dir,
enable_profiling=enable_profiling,
n_behind=n_behind,
)
path = model_config.pop("path")
self.policy_model = AutoModelForCausalLM.from_pretrained(path, **model_config)

View File

@ -57,6 +57,8 @@ def launch_distributed(
eval_generation_config: Optional[Dict[str, Any]] = None,
log_rollout_interval: int = 20,
rollout_save_dir: str = "./rollout",
enable_profiling: bool = False,
n_behind: int = 0,
):
if core_algo not in ALGO_MAP:
raise NotImplementedError(f"{core_algo} is not supported yet.")
@ -132,6 +134,8 @@ def launch_distributed(
wandb_group_name=wandb_group_name,
log_rollout_interval=log_rollout_interval,
rollout_log_file=rollout_log_file,
enable_profiling=enable_profiling,
n_behind=n_behind,
)
producer_procs.append(producer)
ray.get([p.setup.remote() for p in producer_procs])
@ -171,6 +175,8 @@ def launch_distributed(
project_name=project_name,
run_name=run_name,
wandb_group_name=wandb_group_name,
enable_profiling=enable_profiling,
n_behind=n_behind,
)
consumer_procs.append(consumer)
ray.get([p.setup.remote() for p in consumer_procs])

View File

@ -9,6 +9,7 @@ import torch
import tqdm
import wandb
from coati.dataset.loader import RawConversationDataset, collate_fn_grpo
from coati.distributed.profiling_utils import CustomProfiler
from coati.distributed.reward.reward_fn import boxed_math_reward_fn, code_reward_fn, math_reward_fn
from coati.distributed.reward.verifiable_reward import VerifiableReward
from ray.util.collective import allreduce
@ -52,6 +53,8 @@ class BaseProducer:
wandb_group_name: str = None,
log_rollout_interval: int = 20,
rollout_log_file: str = "./rollout_log.jsonl",
enable_profiling: bool = False,
n_behind: int = 0,
):
self.producer_idx = producer_idx
self.num_producers = num_producers
@ -62,6 +65,7 @@ class BaseProducer:
assert batch_size % microbatch_size == 0
self.num_microbatches = batch_size // microbatch_size
self.latest_eval_step = -1
self.profiler = CustomProfiler(f"P{self.producer_idx}", disabled=not enable_profiling)
self.train_dataset_config = train_dataset_config
self.model_config = model_config
@ -75,6 +79,7 @@ class BaseProducer:
self.log_rollout_interval = log_rollout_interval
self.latest_rollout_log_step = -1
self.grpo_config = grpo_config
self.n_behind = n_behind
reward_model_kwargs = {
k: v
for k, v in grpo_config.items()
@ -268,11 +273,14 @@ class BaseProducer:
self.wandb_run.log(to_log_msg, step=self.consumer_global_step)
self.eval_mode = False
self.latest_eval_step = self.consumer_global_step
self.profiler.enter("rollout")
outputs = self.rollout(**batch)
self.profiler.exit("rollout")
outputs["temperature"] = torch.tensor(
[self.model.generate_config["temperature"]] * outputs["input_ids"].size(0)
).to(outputs["input_ids"].device)
bs, num_gen = outputs["input_ids"].size(0), outputs["input_ids"].size(1)
self.profiler.enter("calculate_reward")
if self.grpo_config["reward_fn_type"] == "code":
test_cases = []
for prompt_id in range(bs):
@ -310,14 +318,19 @@ class BaseProducer:
outputs.pop("gt_answer")
if "test_cases" in outputs:
outputs.pop("test_cases")
self.profiler.exit("calculate_reward")
print(f"[P{self.producer_idx}] Send data {[(k, v.shape) for k, v in outputs.items()]}")
outputs = pre_send(outputs)
self.profiler.enter("send_broadcast_data")
ray_broadcast_tensor_dict(
outputs, src=0, device=self.device, group_name=f"sync_data_{self.producer_idx}"
)
if (i + 1) % self.num_microbatches == 0 and (
episode != self.num_episodes - 1 or i != num_valid_microbatches - 1
self.profiler.exit("send_broadcast_data")
if (
(i + 1) % self.num_microbatches == 0
and (episode != self.num_episodes - 1 or i != num_valid_microbatches - 1)
and (episode != 0 or (i + 1) > self.n_behind * self.num_microbatches)
):
if isinstance(self.model, BACKEND_MAP["vllm"]) and self.model.model_config.get(
"enable_sleep_mode", False
@ -325,7 +338,7 @@ class BaseProducer:
self.model.llm.sleep() # revict KV_cache to avoid OOM
# don't sync model for last iteration
torch.cuda.empty_cache()
self.profiler.enter("sync_model")
if self.consumer_pp_size > 1:
for pp_idx in range(self.consumer_pp_size):
print(
@ -347,6 +360,7 @@ class BaseProducer:
if "consumer_global_step" in state_dict:
self.consumer_global_step = state_dict.pop("consumer_global_step").item()
self.load_state_dict(state_dict)
self.profiler.exit("sync_model")
del state_dict
torch.cuda.empty_cache()
if isinstance(self.model, BACKEND_MAP["vllm"]) and self.model.model_config.get(
@ -364,6 +378,9 @@ class BaseProducer:
"temperature"
] + ratio * 0.9
def __del__(self):
self.profiler.close()
@ray.remote
class SimpleProducer(BaseProducer):
@ -392,6 +409,8 @@ class SimpleProducer(BaseProducer):
wandb_group_name: str = None,
log_rollout_interval: int = 20,
rollout_log_file: str = "./rollout_log.jsonl",
enable_profiling: bool = False,
n_behind: int = 0,
):
super().__init__(
producer_idx,
@ -415,6 +434,8 @@ class SimpleProducer(BaseProducer):
wandb_group_name=wandb_group_name,
log_rollout_interval=log_rollout_interval,
rollout_log_file=rollout_log_file,
enable_profiling=enable_profiling,
n_behind=n_behind,
)
self.model = self.backend_cls(model_config, generate_config, self.tokenizer, num_generations)
self.eval_generation_config = copy.deepcopy(self.model.generate_config)

View File

@ -0,0 +1,37 @@
import os
import time
class CustomProfiler:
def __init__(self, name, disabled=True):
self.disabled = disabled
if not disabled:
self.name = name
self.pid = os.getpid()
self.file = open(f"{name}.prof", "w")
def _log(self, message):
if self.disabled:
return
current_time = time.time()
self.file.write(f"{current_time} {self.name} {self.pid}:: {message}\n")
self.file.flush()
def log(self, message):
if self.disabled:
return
current_time = time.time()
self.file.write(f"[Log]: {current_time} {self.name} {self.pid}:: {message}\n")
self.file.flush()
def enter(self, event_name):
self._log(f"Enter {event_name}")
def exit(self, event_name):
self._log(f"Exit {event_name}")
def close(self):
if self.disabled:
return
self.file.close()
print(f"Profiler data written to {self.name}.prof")

View File

@ -0,0 +1,13 @@
export VLLM_ALLOW_LONG_MAX_MODEL_LEN=1
# 8K context length
# rm -rf *.prof
# MAX_NEW_TOKENS=$((8192-512))
# python rl_example.py --dataset /mnt/nfs/yeanbang/experiments/RLHF/grpo/train-alignment-samll.jsonl --model /home/share/data/model/Qwen2.5-Math-7B/ -t 4 -i 4 -b vllm -a GRPO -ibs 16 -tbs 16 -e 1 -rt boxed -si 100 -s "Please reason step by step, and put your final answer within \\boxed{}." -tmbs 4 -p GRPO-Math-Profile -ei -5 -zero 1 -pp 2 -mnt $MAX_NEW_TOKENS -nb 1 --enable_profiling 2>&1| tee ibs_64_tbs_32_tmbs_2_pp_2_ptp_2_8192_GRPO_profile.txt
# python profile_grpo.py --visualization actor_timelines_ibs_64_tbs_32_tmbs_2_pp_2_ptp_2_8192_GRPO_profile.png
# 4K context length
rm -rf *.prof
MAX_NEW_TOKENS=$((4096-512))
python rl_example.py --dataset /mnt/nfs/yeanbang/experiments/RLHF/grpo/train-alignment-samll.jsonl --model /home/share/data/model/Qwen2.5-Math-7B/ -t 4 -i 4 -b vllm -a GRPO -ibs 8 -tbs 8 -e 1 -rt boxed -si 100 -s "Please reason step by step, and put your final answer within \\boxed{}." -tMbs 4 -tmbs 4 -p GRPO-Math-Profile -ei -5 -zero 2 -mnt $MAX_NEW_TOKENS -nb 1 --enable_profiling 2>&1| tee ibs_32_tbs_32_tmbs_4_zero_2_4096_GRPO_profile.txt
python visualization.py --visualization actor_timelines_ibs_32_tbs_32_tmbs_4_zero_2_4096_GRPO_profile.png

View File

@ -67,6 +67,27 @@ if __name__ == "__main__":
default=2,
help="Effective batch size per dp group for forwarding and backwarding. Please select based on the availiable memory.",
)
parser.add_argument(
"-tp",
"--tensor-parallel-size",
type=int,
default=1,
help="Tensor parallel size for the trainer (consumer). Please check the generation arguments documentation for your backend.",
)
parser.add_argument(
"-pp",
"--pipeline-parallel-size",
type=int,
default=1,
help="Pipeline parallel size for the trainer (consumer). Please check the generation arguments documentation for your backend.",
)
parser.add_argument(
"-zero",
"--zero-stage",
type=int,
default=0,
help="Zero stage for the trainer (consumer). Please check the generation arguments documentation for your backend.",
)
parser.add_argument(
"--ray_dir", type=str, default=None, help="Custom temperary directory for storing ray cluster data, Optional"
)
@ -97,6 +118,13 @@ if __name__ == "__main__":
parser.add_argument("-s", "--system-prompt", type=str, default=None, help="System prompt for data construction.")
parser.add_argument("-mnt", "--max-new-tokens", type=int, default=1024 * 4 - 512, help="Max length for generation.")
parser.add_argument("-mpt", "--max-prompt-tokens", type=int, default=512, help="Max length for prompt.")
parser.add_argument(
"-ptp",
"--producer-tensor-parallel-size",
type=int,
default=1,
help="Tensor parallel size for the producer. Please check the generation arguments documentation for your backend.",
)
# GRPO parameters
parser.add_argument("-a", "--algo", type=str, default="GRPO", choices=["DAPO", "GRPO"])
@ -117,6 +145,13 @@ if __name__ == "__main__":
default=100,
help="Interval for evaluation. Evaluate every ei training steps.",
)
parser.add_argument(
"-nb",
"--n-behind",
type=int,
default=0,
help="Number of producer batches to rollout to fill the data buffer before trainer starts to decrease bubble time",
)
# Logging/Checkpointing parameters
parser.add_argument("-si", "--save-interval", type=int, default=100, help="Interval for saving checkpoints.")
@ -128,32 +163,7 @@ if __name__ == "__main__":
"-rsd", "--rollout-save-dir", type=str, default="./rollouts", help="Directory for saving rollout loggings."
)
parser.add_argument(
"-tp",
"--tensor-parallel-size",
type=int,
default=1,
help="Tensor parallel size for the trainer (consumer). Please check the generation arguments documentation for your backend.",
)
parser.add_argument(
"-pp",
"--pipeline-parallel-size",
type=int,
default=1,
help="Pipeline parallel size for the trainer (consumer). Please check the generation arguments documentation for your backend.",
)
parser.add_argument(
"-zero",
"--zero-stage",
type=int,
default=0,
help="Zero stage for the trainer (consumer). Please check the generation arguments documentation for your backend.",
)
parser.add_argument(
"-ptp",
"--producer-tensor-parallel-size",
type=int,
default=1,
help="Tensor parallel size for the producer. Please check the generation arguments documentation for your backend.",
"--enable_profiling", action="store_true", default=False, help="Enable profiling for the training process."
)
args = parser.parse_args()
@ -236,14 +246,25 @@ if __name__ == "__main__":
tensor_parallel_size=args.producer_tensor_parallel_size,
)
)
generate_config.update(
dict(
max_tokens=args.max_new_tokens, # max new tokens
ignore_eos=True if args.reward_type == "think_answer_tags" else False,
include_stop_str_in_output=True,
stop=["</answer>"] if args.reward_type == "think_answer_tags" else None,
if args.enable_profiling:
# If profiling is enabled, we force model to generate to max_new_tokens
generate_config.update(
dict(
max_tokens=args.max_new_tokens, # max new tokens
ignore_eos=True,
include_stop_str_in_output=True,
stop=None,
)
)
else:
generate_config.update(
dict(
max_tokens=args.max_new_tokens, # max new tokens
ignore_eos=True if args.reward_type == "think_answer_tags" else False,
include_stop_str_in_output=True,
stop=["</answer>"] if args.reward_type == "think_answer_tags" else None,
)
)
)
eval_generation_config = {"temperature": 0.6} # used to update generation config for evaluation
else:
raise ValueError(f"Unsupported backend: {args.backend}")
@ -353,4 +374,6 @@ if __name__ == "__main__":
eval_generation_config=eval_generation_config,
log_rollout_interval=20,
rollout_save_dir=args.rollout_save_dir,
enable_profiling=args.enable_profiling,
n_behind=args.n_behind,
)

View File

@ -0,0 +1,100 @@
# Re-import required libraries due to kernel reset
import argparse
from collections import defaultdict
import matplotlib.cm as cm
import matplotlib.pyplot as plt
# Argument parser for command line arguments
parser = argparse.ArgumentParser(description="Process profiling logs and generate a timeline plot.")
parser.add_argument("--visualization", type=str, default="actor_timelines.png", help="Path to the visualization file.")
args = parser.parse_args()
# Raw log lines
log_lines = []
import glob
files = glob.glob("*.prof")
for file in files:
with open(file, "r") as f:
log_lines += f.readlines()
# Parse logs and collect function intervals grouped by actor
actors = defaultdict(lambda: defaultdict(list))
current_entries = {}
# First, collect all timestamps to find the minimum
all_timestamps = []
parsed_lines = []
for line in log_lines:
if line.startswith("[Log]"):
continue
parts = line.split()
timestamp = float(parts[0])
actor = parts[1]
action = parts[3]
func_name = parts[4]
parsed_lines.append((timestamp, actor, action, func_name))
all_timestamps.append(timestamp)
if not all_timestamps:
raise ValueError("No valid log entries found.")
min_timestamp = min(all_timestamps)
for timestamp, actor, action, func_name in parsed_lines:
rel_timestamp = timestamp - min_timestamp
key = (actor, func_name)
if action == "Enter":
current_entries[key] = rel_timestamp
elif action == "Exit":
start_time = current_entries.pop(key, None)
if start_time is not None:
actors[actor][func_name].append((start_time, rel_timestamp))
# Plotting setup
fig, ax = plt.subplots(figsize=(12, 6))
colors = cm.get_cmap("tab10", len(actors))
actor_offsets = {}
base_offset = 0
function_spacing = 0.9
yticks = []
yticklabels = []
for idx, (actor, func_dict) in enumerate(actors.items()):
actor_offsets[actor] = base_offset
color = colors(idx)
for j, (func, intervals) in enumerate(func_dict.items()):
print(actor, func, intervals)
y_val = base_offset + j * function_spacing
yticks.append(y_val)
yticklabels.append(f"{actor}:{func}")
for start, end in intervals:
if end - start < 1:
end = start + 1 # Ensure all lines are at least 3 units long
ax.plot(
[start, end],
[y_val, y_val],
color=color,
linewidth=2,
label=actor if j == 0 else "",
)
base_offset += len(func_dict) * function_spacing + 1
# Formatting
ax.set_yticks(yticks)
ax.set_yticklabels(yticklabels)
ax.set_xlabel("Time")
ax.set_title("Timeline per Actor")
# Remove duplicate labels in legend
handles, labels = ax.get_legend_handles_labels()
unique = dict(zip(labels, handles))
ax.legend(unique.values(), unique.keys())
plt.tight_layout()
plt.grid(True)
plt.savefig(args.visualization, dpi=600) # Increase dpi for higher resolution
print(f"Plot saved as {args.visualization}")