[ColossalChat] Update RLHF V2 (#5286)

* Add dpo. Fix sft, ppo, lora. Refactor all

* fix and tested ppo

* 2 nd round refactor

* add ci tests

* fix ci

* fix ci

* fix readme, style

* fix readme style

* fix style, fix benchmark

* reproduce benchmark result, remove useless files

* rename to ColossalChat

* use new image

* fix ci workflow

* fix ci

* use local model/tokenizer for ci tests

* fix ci

* fix ci

* fix ci

* fix ci timeout

* fix rm progress bar. fix ci timeout

* fix ci

* fix ci typo

* remove 3d plugin from ci temporary

* test environment

* cannot save optimizer

* support chat template

* fix readme

* fix path

* test ci locally

* restore build_or_pr

* fix ci data path

* fix benchmark

* fix ci, move ci tests to 3080, disable fast tokenizer

* move ci to 85

* support flash attention 2

* add all-in-one data preparation script. Fix colossal-llama2-chat chat template

* add hardware requirements

* move ci test data

* fix save_model, add unwrap

* fix missing bos

* fix missing bos; support grad accumulation with gemini

* fix ci

* fix ci

* fix ci

* fix llama2 chat template config

* debug sft

* debug sft

* fix colossalai version requirement

* fix ci

* add sanity check to prevent NaN loss

* fix requirements

* add dummy data generation script

* add dummy data generation script

* add dummy data generation script

* add dummy data generation script

* update readme

* update readme

* update readme and ignore

* fix logger bug

* support parallel_output

* modify data preparation logic

* fix tokenization

* update lr

* fix inference

* run pre-commit

---------

Co-authored-by: Tong Li <tong.li352711588@gmail.com>
This commit is contained in:
YeAnbang
2024-03-29 14:12:29 +08:00
committed by GitHub
parent 36c4bb2893
commit df5e9c53cf
200 changed files with 8848 additions and 8049 deletions

View File

@@ -0,0 +1,4 @@
from .base import ExperienceBuffer
from .naive import NaiveExperienceBuffer
__all__ = ["ExperienceBuffer", "NaiveExperienceBuffer"]

View File

@@ -0,0 +1,43 @@
from abc import ABC, abstractmethod
from typing import Any
from coati.experience_maker.base import Experience
class ExperienceBuffer(ABC):
"""Experience buffer base class. It stores experience.
Args:
sample_batch_size (int): Batch size when sampling.
limit (int, optional): Limit of number of experience samples. A number <= 0 means unlimited. Defaults to 0.
"""
def __init__(self, sample_batch_size: int, limit: int = 0) -> None:
super().__init__()
self.sample_batch_size = sample_batch_size
# limit <= 0 means unlimited
self.limit = limit
@abstractmethod
def append(self, experience: Experience) -> None:
pass
@abstractmethod
def clear(self) -> None:
pass
@abstractmethod
def sample(self) -> Experience:
pass
@abstractmethod
def __len__(self) -> int:
pass
@abstractmethod
def __getitem__(self, idx: int) -> Any:
pass
@abstractmethod
def collate_fn(self, batch: Any) -> Experience:
pass

View File

@@ -0,0 +1,69 @@
import random
from typing import List
import torch
from coati.experience_maker.base import Experience
from colossalai.logging import get_dist_logger
from .base import ExperienceBuffer
from .utils import BufferItem, make_experience_batch, split_experience_batch
logger = get_dist_logger()
class NaiveExperienceBuffer(ExperienceBuffer):
"""Naive experience buffer class. It stores experience.
Args:
sample_batch_size (int): Batch size when sampling.
limit (int, optional): Limit of number of experience samples. A number <= 0 means unlimited. Defaults to 0.
cpu_offload (bool, optional): Whether to offload experience to cpu when sampling. Defaults to True.
"""
def __init__(self, sample_batch_size: int, limit: int = 0, cpu_offload: bool = True) -> None:
super().__init__(sample_batch_size, limit)
self.cpu_offload = cpu_offload
self.target_device = torch.device(f"cuda:{torch.cuda.current_device()}")
# TODO(ver217): add prefetch
self.items: List[BufferItem] = []
@torch.no_grad()
def append(self, experience: Experience) -> None:
if self.cpu_offload:
experience.to_device(torch.device("cpu"))
items = split_experience_batch(experience)
self.items.extend(items)
if self.limit > 0:
samples_to_remove = len(self.items) - self.limit
if samples_to_remove > 0:
logger.warning(f"Experience buffer is full. Removing {samples_to_remove} samples.")
self.items = self.items[samples_to_remove:]
def clear(self) -> None:
self.items.clear()
@torch.no_grad()
def sample(self) -> Experience:
"""
Randomly samples experiences from the buffer.
Returns:
A batch of sampled experiences.
"""
items = random.sample(self.items, self.sample_batch_size)
experience = make_experience_batch(items)
if self.cpu_offload:
experience.to_device(self.target_device)
return experience
def __len__(self) -> int:
return len(self.items)
def __getitem__(self, idx: int) -> BufferItem:
return self.items[idx]
def collate_fn(self, batch) -> Experience:
experience = make_experience_batch(batch)
return experience

View File

@@ -0,0 +1,75 @@
from dataclasses import dataclass
from typing import List, Optional
import torch
import torch.nn.functional as F
from coati.experience_maker.base import Experience
@dataclass
class BufferItem:
"""BufferItem is an item of experience data.
Shapes of each tensor:
sequences: (S)
action_log_probs: (A)
values: (1)
reward: (1)
advantages: (1)
attention_mask: (S)
action_mask: (A)
"A" is the number of actions.
"""
sequences: torch.Tensor
action_log_probs: torch.Tensor
values: torch.Tensor
reward: torch.Tensor
kl: torch.Tensor
advantages: torch.Tensor
attention_mask: Optional[torch.LongTensor]
action_mask: Optional[torch.BoolTensor]
def split_experience_batch(experience: Experience) -> List[BufferItem]:
batch_size = experience.sequences.size(0)
batch_kwargs = [{} for _ in range(batch_size)]
keys = ("sequences", "action_log_probs", "values", "reward", "kl", "advantages", "attention_mask", "action_mask")
for key in keys:
value = getattr(experience, key)
if isinstance(value, torch.Tensor):
vals = torch.unbind(value)
else:
# None
vals = [value for _ in range(batch_size)]
assert batch_size == len(vals)
for i, v in enumerate(vals):
batch_kwargs[i][key] = v
items = [BufferItem(**kwargs) for kwargs in batch_kwargs]
return items
def _zero_pad_sequences(sequences: List[torch.Tensor], side: str = "left") -> torch.Tensor:
assert side in ("left", "right")
max_len = max(seq.size(0) for seq in sequences)
padded_sequences = []
for seq in sequences:
pad_len = max_len - seq.size(0)
padding = (pad_len, 0) if side == "left" else (0, pad_len)
padded_sequences.append(F.pad(seq, padding))
return torch.stack(padded_sequences, dim=0)
def make_experience_batch(items: List[BufferItem]) -> Experience:
kwargs = {}
to_pad_keys = set(("action_log_probs", "action_mask"))
keys = ("sequences", "action_log_probs", "values", "reward", "kl", "advantages", "attention_mask", "action_mask")
for key in keys:
vals = [getattr(item, key) for item in items]
if key in to_pad_keys:
batch_data = _zero_pad_sequences(vals)
else:
batch_data = torch.stack(vals, dim=0)
kwargs[key] = batch_data
return Experience(**kwargs)