[ColossalChat] Update RLHF V2 (#5286)

* Add dpo. Fix sft, ppo, lora. Refactor all

* fix and tested ppo

* 2 nd round refactor

* add ci tests

* fix ci

* fix ci

* fix readme, style

* fix readme style

* fix style, fix benchmark

* reproduce benchmark result, remove useless files

* rename to ColossalChat

* use new image

* fix ci workflow

* fix ci

* use local model/tokenizer for ci tests

* fix ci

* fix ci

* fix ci

* fix ci timeout

* fix rm progress bar. fix ci timeout

* fix ci

* fix ci typo

* remove 3d plugin from ci temporary

* test environment

* cannot save optimizer

* support chat template

* fix readme

* fix path

* test ci locally

* restore build_or_pr

* fix ci data path

* fix benchmark

* fix ci, move ci tests to 3080, disable fast tokenizer

* move ci to 85

* support flash attention 2

* add all-in-one data preparation script. Fix colossal-llama2-chat chat template

* add hardware requirements

* move ci test data

* fix save_model, add unwrap

* fix missing bos

* fix missing bos; support grad accumulation with gemini

* fix ci

* fix ci

* fix ci

* fix llama2 chat template config

* debug sft

* debug sft

* fix colossalai version requirement

* fix ci

* add sanity check to prevent NaN loss

* fix requirements

* add dummy data generation script

* add dummy data generation script

* add dummy data generation script

* add dummy data generation script

* update readme

* update readme

* update readme and ignore

* fix logger bug

* support parallel_output

* modify data preparation logic

* fix tokenization

* update lr

* fix inference

* run pre-commit

---------

Co-authored-by: Tong Li <tong.li352711588@gmail.com>
This commit is contained in:
YeAnbang
2024-03-29 14:12:29 +08:00
committed by GitHub
parent 36c4bb2893
commit df5e9c53cf
200 changed files with 8848 additions and 8049 deletions

View File

@@ -0,0 +1,58 @@
"""
Base class for critic and reward model
"""
from typing import Optional
import torch
import torch.nn as nn
from transformers import AutoModel, PretrainedConfig
class BaseModel(nn.Module):
"""
Actor model base class.
Args:
pretrained (str): path to pretrained model.
config (PretrainedConfig): PretrainedConfig used to initiate the base model.
**kwargs: all other kwargs as in AutoModel.from_pretrained
"""
def __init__(self, pretrained: str = None, config: Optional[PretrainedConfig] = None, **kwargs) -> None:
super().__init__()
if pretrained is not None:
if config is not None:
# initialize with config and load weights from pretrained
self.model = AutoModel.from_pretrained(pretrained, config=config, **kwargs)
else:
# initialize with pretrained
self.model = AutoModel.from_pretrained(pretrained, **kwargs)
elif config is not None:
# initialize with config
self.model = AutoModel.from_config(config, **kwargs)
else:
raise ValueError("Either pretrained or config must be provided.")
self.config = self.model.config
# create dummy input to get the size of the last hidden state
if "use_flash_attention_2" in kwargs:
self.model = self.model.cuda()
dummy_input = torch.zeros((1, 1), dtype=torch.long).to(self.model.device)
out = self.model(dummy_input)
self.last_hidden_state_size = out.last_hidden_state.shape[-1]
self.model = self.model.cpu()
# print("self.last_hidden_state_size: ",self.last_hidden_state_size)
def resize_token_embeddings(self, *args, **kwargs):
"""
Resize the token embeddings of the model.
Args:
*args: Variable length argument list.
**kwargs: Arbitrary keyword arguments.
Returns:
The resized token embeddings.
"""
return self.model.resize_token_embeddings(*args, **kwargs)