mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-05-15 11:53:00 +00:00
[NFC] polish colossalai/fx/tracer/meta_patch/patched_module/convolution.py code style (#1563)
This commit is contained in:
parent
9823cbf24b
commit
e070ca45c6
@ -56,33 +56,32 @@ def torch_nn_conv3d(self, input):
|
|||||||
)
|
)
|
||||||
return torch.empty(result_shape, device='meta')
|
return torch.empty(result_shape, device='meta')
|
||||||
|
|
||||||
|
|
||||||
@meta_patched_module.register(torch.nn.ConvTranspose1d)
|
@meta_patched_module.register(torch.nn.ConvTranspose1d)
|
||||||
def torch_nn_convtranspose1d(self, input):
|
def torch_nn_convtranspose1d(self, input):
|
||||||
# the output shape is calculated using the formula stated
|
# the output shape is calculated using the formula stated
|
||||||
# at https://pytorch.org/docs/stable/generated/torch.nn.ConvTranspose1d.html
|
# at https://pytorch.org/docs/stable/generated/torch.nn.ConvTranspose1d.html
|
||||||
l_in = input.shape[-1]
|
l_in = input.shape[-1]
|
||||||
c_out = self.out_channels
|
c_out = self.out_channels
|
||||||
l_out = math.floor((l_in - 1) * self.stride[0] - 2 * self.padding[0] +
|
l_out = math.floor((l_in - 1) * self.stride[0] - 2 * self.padding[0] + self.dilation[0] *
|
||||||
self.dilation[0] * (self.kernel_size[0] - 1) +
|
(self.kernel_size[0] - 1) + self.output_padding[0] + 1)
|
||||||
self.output_padding[0] + 1)
|
|
||||||
result_shape = input.shape[:-2] + (
|
result_shape = input.shape[:-2] + (
|
||||||
c_out,
|
c_out,
|
||||||
l_out,
|
l_out,
|
||||||
)
|
)
|
||||||
return torch.empty(result_shape, device='meta')
|
return torch.empty(result_shape, device='meta')
|
||||||
|
|
||||||
|
|
||||||
@meta_patched_module.register(torch.nn.ConvTranspose2d)
|
@meta_patched_module.register(torch.nn.ConvTranspose2d)
|
||||||
def torch_nn_convtranspose2d(self, input):
|
def torch_nn_convtranspose2d(self, input):
|
||||||
# the output shape is calculated using the formula stated
|
# the output shape is calculated using the formula stated
|
||||||
# at https://pytorch.org/docs/stable/generated/torch.nn.ConvTranspose2d.html
|
# at https://pytorch.org/docs/stable/generated/torch.nn.ConvTranspose2d.html
|
||||||
h_in, w_in = input.shape[-2:]
|
h_in, w_in = input.shape[-2:]
|
||||||
c_out = self.out_channels
|
c_out = self.out_channels
|
||||||
h_out = math.floor((h_in - 1) * self.stride[0] - 2 * self.padding[0] +
|
h_out = math.floor((h_in - 1) * self.stride[0] - 2 * self.padding[0] + self.dilation[0] *
|
||||||
self.dilation[0] * (self.kernel_size[0] - 1) +
|
(self.kernel_size[0] - 1) + self.output_padding[0] + 1)
|
||||||
self.output_padding[0] + 1)
|
w_out = math.floor((w_in - 1) * self.stride[1] - 2 * self.padding[1] + self.dilation[1] *
|
||||||
w_out = math.floor((w_in - 1) * self.stride[1] - 2 * self.padding[1] +
|
(self.kernel_size[1] - 1) + self.output_padding[1] + 1)
|
||||||
self.dilation[1] * (self.kernel_size[1] - 1) +
|
|
||||||
self.output_padding[1] + 1)
|
|
||||||
result_shape = input.shape[:-3] + (
|
result_shape = input.shape[:-3] + (
|
||||||
c_out,
|
c_out,
|
||||||
h_out,
|
h_out,
|
||||||
@ -90,21 +89,19 @@ def torch_nn_convtranspose2d(self, input):
|
|||||||
)
|
)
|
||||||
return torch.empty(result_shape, device='meta')
|
return torch.empty(result_shape, device='meta')
|
||||||
|
|
||||||
|
|
||||||
@meta_patched_module.register(torch.nn.ConvTranspose3d)
|
@meta_patched_module.register(torch.nn.ConvTranspose3d)
|
||||||
def torch_nn_convtranspose3d(self, input):
|
def torch_nn_convtranspose3d(self, input):
|
||||||
# the output shape is calculated using the formula stated
|
# the output shape is calculated using the formula stated
|
||||||
# at https://pytorch.org/docs/stable/generated/torch.nn.ConvTranspose3d.html
|
# at https://pytorch.org/docs/stable/generated/torch.nn.ConvTranspose3d.html
|
||||||
d_in, h_in, w_in = input.shape[-3:]
|
d_in, h_in, w_in = input.shape[-3:]
|
||||||
c_out = self.out_channels
|
c_out = self.out_channels
|
||||||
d_out = math.floor((d_in - 1) * self.stride[0] - 2 * self.padding[0] +
|
d_out = math.floor((d_in - 1) * self.stride[0] - 2 * self.padding[0] + self.dilation[0] *
|
||||||
self.dilation[0] * (self.kernel_size[0] - 1) +
|
(self.kernel_size[0] - 1) + self.output_padding[0] + 1)
|
||||||
self.output_padding[0] + 1)
|
h_out = math.floor((h_in - 1) * self.stride[1] - 2 * self.padding[1] + self.dilation[1] *
|
||||||
h_out = math.floor((h_in - 1) * self.stride[1] - 2 * self.padding[1] +
|
(self.kernel_size[1] - 1) + self.output_padding[1] + 1)
|
||||||
self.dilation[1] * (self.kernel_size[1] - 1) +
|
w_out = math.floor((w_in - 1) * self.stride[2] - 2 * self.padding[2] + self.dilation[2] *
|
||||||
self.output_padding[1] + 1)
|
(self.kernel_size[2] - 1) + self.output_padding[2] + 1)
|
||||||
w_out = math.floor((w_in - 1) * self.stride[2] - 2 * self.padding[2] +
|
|
||||||
self.dilation[2] * (self.kernel_size[2] - 1) +
|
|
||||||
self.output_padding[2] + 1)
|
|
||||||
result_shape = input.shape[:-4] + (
|
result_shape = input.shape[:-4] + (
|
||||||
c_out,
|
c_out,
|
||||||
d_out,
|
d_out,
|
||||||
|
Loading…
Reference in New Issue
Block a user