Feature/chatglm (#4240)

* [shardformer] added tests

* [shardformer] vit test finish and support

* [shardformer] chatglm ready

* import chatglm

* [shardformer] add test kit in model zoo for chatglm

* [sharformer] add first version of policy of chatglm

* [shardformer] polish chatglm code

* [shardformer] polish code

* [shardformer] support chatglm without layernorm

* [shardformer] chatglm shard without mlp sharding

* [shardformer] delete some file

* [shardformer] ChatGLM support layernorm sharding

* [shardformer] register without auto policy

* [shardformer] pre-commit check files

* [shardformer] fix chatglm configuration with pre-commit
This commit is contained in:
Kun Lin
2023-07-20 17:28:00 +08:00
committed by Hongxin Liu
parent 9ee4ebea83
commit ed34bb1310
6 changed files with 1672 additions and 0 deletions

View File

@@ -1,6 +1,7 @@
from .albert import *
from .bert import *
from .bloom import *
from .chatglm import *
from .gpt import *
from .llama import *
from .opt import *

View File

@@ -0,0 +1,38 @@
import torch
import transformers
from ..registry import ModelAttribute, model_zoo
from .chatglm2_6b.configuration_chatglm import ChatGLMConfig
from .chatglm2_6b.modeling_chatglm import ChatGLMModel
# ================================
# Register single-sentence ChatGLM
# ================================
def data_gen():
input_ids = torch.tensor([[5941, 15, 2670, 3543, 632, 2075]], dtype=torch.int64)
attention_mask = torch.tensor([[1, 1, 1, 1, 1, 1]])
return dict(input_ids=input_ids, attention_mask=attention_mask)
# define output transform function
output_transform_fn = lambda x: x
# define loss function
loss_fn_for_chatglm_model = lambda x: x.last_hidden_state.mean()
loss_fn = lambda x: x.loss
config = ChatGLMConfig(num_layers=1,
padded_vocab_size=65024,
hidden_size=64,
num_attention_heads=8,
rmsnorm=False,
original_rope=True,
use_cache=True)
model_zoo.register(name='transformers_chatglm',
model_fn=lambda: ChatGLMModel(config, empty_init=False),
data_gen_fn=data_gen,
output_transform_fn=output_transform_fn,
loss_fn=loss_fn_for_chatglm_model,
model_attribute=ModelAttribute(has_control_flow=True))

View File

@@ -0,0 +1,58 @@
from transformers import PretrainedConfig
class ChatGLMConfig(PretrainedConfig):
model_type = "chatglm"
def __init__(self,
num_layers=28,
padded_vocab_size=65024,
hidden_size=4096,
ffn_hidden_size=13696,
kv_channels=128,
num_attention_heads=32,
seq_length=2048,
hidden_dropout=0.0,
attention_dropout=0.0,
layernorm_epsilon=1e-5,
rmsnorm=True,
apply_residual_connection_post_layernorm=False,
post_layer_norm=True,
add_bias_linear=False,
add_qkv_bias=False,
bias_dropout_fusion=True,
multi_query_attention=False,
multi_query_group_num=1,
apply_query_key_layer_scaling=True,
attention_softmax_in_fp32=True,
fp32_residual_connection=False,
quantization_bit=0,
pre_seq_len=None,
prefix_projection=False,
**kwargs):
self.num_layers = num_layers
self.vocab_size = padded_vocab_size
self.padded_vocab_size = padded_vocab_size
self.hidden_size = hidden_size
self.ffn_hidden_size = ffn_hidden_size
self.kv_channels = kv_channels
self.num_attention_heads = num_attention_heads
self.seq_length = seq_length
self.hidden_dropout = hidden_dropout
self.attention_dropout = attention_dropout
self.layernorm_epsilon = layernorm_epsilon
self.rmsnorm = rmsnorm
self.apply_residual_connection_post_layernorm = apply_residual_connection_post_layernorm
self.post_layer_norm = post_layer_norm
self.add_bias_linear = add_bias_linear
self.add_qkv_bias = add_qkv_bias
self.bias_dropout_fusion = bias_dropout_fusion
self.multi_query_attention = multi_query_attention
self.multi_query_group_num = multi_query_group_num
self.apply_query_key_layer_scaling = apply_query_key_layer_scaling
self.attention_softmax_in_fp32 = attention_softmax_in_fp32
self.fp32_residual_connection = fp32_residual_connection
self.quantization_bit = quantization_bit
self.pre_seq_len = pre_seq_len
self.prefix_projection = prefix_projection
super().__init__(**kwargs)

File diff suppressed because it is too large Load Diff