mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-07 20:10:17 +00:00
address conversation
This commit is contained in:
@@ -118,48 +118,49 @@ class BaseConsumer:
|
||||
for r in range(self.num_producers):
|
||||
print(f"[T{dist.get_rank()}] Recv data episode {episode} step {step} from {r}")
|
||||
raw_batch = ray_broadcast_tensor_dict(None, src=0, device=self.device, group_name=f"sync_data_{r}")
|
||||
recv_effective_count = 0
|
||||
# calculate group reward et al. filtering. As only the filtered group will be used for training (which is incomplete),
|
||||
# we need to calculate the metrics before filtering here for logging
|
||||
raw_batch_with_reward = unbind_batch(self.calculate_reward(raw_batch))
|
||||
for group_with_reward in raw_batch_with_reward:
|
||||
group_reward_mean = group_with_reward["reward"].mean().cpu().item()
|
||||
group_format_acc_mean = group_with_reward["format_acc"].mean().cpu().item()
|
||||
group_ans_acc_mean = group_with_reward["ans_acc"].mean().cpu().item()
|
||||
group_response_len = (
|
||||
(
|
||||
group_with_reward["response_idx"][:, 1]
|
||||
- group_with_reward["response_idx"][:, 0]
|
||||
+ 1
|
||||
)
|
||||
.type(torch.float32)
|
||||
.mean()
|
||||
.cpu()
|
||||
.item()
|
||||
# [batch_size, num_generations, ...] -> [batch_size * num_generations, ...]
|
||||
raw_batch_with_reward = self.calculate_reward({k:v.view(-1, v.size(-1)) if k!='temperature' else v for k, v in raw_batch.items()})
|
||||
raw_batch_with_reward = {k: v.view(-1, self.num_generations, v.size(-1)) if k!='temperature' else v for k, v in raw_batch_with_reward.items()}
|
||||
# [batch_size, num_generations] -> [batch_size]
|
||||
group_reward_mean = raw_batch_with_reward["reward"][:,:,0].mean(dim=-1)
|
||||
group_format_acc_mean = raw_batch_with_reward["format_acc"][:,:,0].mean(dim=-1)
|
||||
group_ans_acc_mean = raw_batch_with_reward["ans_acc"][:,:,0].mean(dim=-1)
|
||||
group_response_len = (
|
||||
(raw_batch_with_reward["response_idx"][:, :, 1] - raw_batch_with_reward["response_idx"][:, :, 0] + 1)
|
||||
.type(torch.float32)
|
||||
.mean(dim=-1)
|
||||
)
|
||||
effective_group_mask = None
|
||||
if self.filter_range is not None and self.grpo_config.get("dynamic_batching", True):
|
||||
# filter the group based on the reward and accuracy
|
||||
effective_group_mask = torch.logical_and(
|
||||
group_ans_acc_mean > self.filter_range[0], group_ans_acc_mean < self.filter_range[1]
|
||||
)
|
||||
if self.grpo_config.get("dynamic_batching", True):
|
||||
filtered_group = self.prompt_level_filtering(group_with_reward)
|
||||
recv_effective_count += 1 if filtered_group is not None else 0
|
||||
raw_batch_with_reward = unbind_batch(raw_batch_with_reward) # List[Dict[str, torch.Tensor]]
|
||||
for group_idx, group_with_reward in enumerate(raw_batch_with_reward):
|
||||
self.buffer.append(
|
||||
[
|
||||
filtered_group,
|
||||
group_reward_mean,
|
||||
group_format_acc_mean,
|
||||
group_ans_acc_mean,
|
||||
group_response_len,
|
||||
group_with_reward if effective_group_mask is None or effective_group_mask[group_idx] else None,
|
||||
group_reward_mean[group_idx],
|
||||
group_format_acc_mean[group_idx],
|
||||
group_ans_acc_mean[group_idx],
|
||||
group_response_len[group_idx],
|
||||
]
|
||||
)
|
||||
if self.filter_range is not None:
|
||||
if effective_group_mask is not None:
|
||||
print(
|
||||
f"[T{dist.get_rank()}] Filter recv data: {len(raw_batch)} -> {recv_effective_count}"
|
||||
f"[T{dist.get_rank()}] Filter recv data: {len(raw_batch)} -> {torch.sum(effective_group_mask).cpu().item()} effective groups"
|
||||
)
|
||||
# mapping the effective group to the raw group for indexing
|
||||
effective_group_to_raw_group_mapping = {}
|
||||
for buffer_idx in range(len(self.buffer)):
|
||||
if self.buffer[buffer_idx][0] is not None:
|
||||
effective_group_to_raw_group_mapping[len(effective_group_to_raw_group_mapping)] = (
|
||||
buffer_idx
|
||||
)
|
||||
# mapping the effective group to the raw group for indexing
|
||||
effective_group_to_raw_group_mapping = {}
|
||||
for buffer_idx in range(len(self.buffer)):
|
||||
if self.buffer[buffer_idx][0] is not None:
|
||||
effective_group_to_raw_group_mapping[len(effective_group_to_raw_group_mapping)] = (
|
||||
buffer_idx
|
||||
)
|
||||
pbar.set_postfix({"Collect Effective Prompt": f"{len(effective_group_to_raw_group_mapping)}/{self.dp_size * self.minibatch_size}"})
|
||||
|
||||
while len(effective_group_to_raw_group_mapping) >= self.dp_size * self.minibatch_size:
|
||||
# on each dp_rank, we use minibatch_size effective samples to form a batch
|
||||
|
Reference in New Issue
Block a user