mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-07 03:52:01 +00:00
[inference] Refactor inference architecture (#5057)
* [inference] support only TP (#4998) * support only tp * enable tp * add support for bloom (#5008) * [refactor] refactor gptq and smoothquant llama (#5012) * refactor gptq and smoothquant llama * fix import error * fix linear import torch-int * fix smoothquant llama import error * fix import accelerate error * fix bug * fix import smooth cuda * fix smoothcuda * [Inference Refactor] Merge chatglm2 with pp and tp (#5023) merge chatglm with pp and tp * [Refactor] remove useless inference code (#5022) * remove useless code * fix quant model * fix test import bug * mv original inference legacy * fix chatglm2 * [Refactor] refactor policy search and quant type controlling in inference (#5035) * [Refactor] refactor policy search and quant type controling in inference * [inference] update readme (#5051) * update readme * update readme * fix architecture * fix table * fix table * [inference] udpate example (#5053) * udpate example * fix run.sh * fix rebase bug * fix some errors * update readme * add some features * update interface * update readme * update benchmark * add requirements-infer --------- Co-authored-by: Bin Jia <45593998+FoolPlayer@users.noreply.github.com> Co-authored-by: Zhongkai Zhao <kanezz620@gmail.com>
This commit is contained in:
4
colossalai/legacy/inference/tensor_parallel/__init__.py
Normal file
4
colossalai/legacy/inference/tensor_parallel/__init__.py
Normal file
@@ -0,0 +1,4 @@
|
||||
from .engine import TPInferEngine
|
||||
from .kvcache_manager import MemoryManager
|
||||
|
||||
__all__ = ["MemoryManager", "TPInferEngine"]
|
118
colossalai/legacy/inference/tensor_parallel/batch_infer_state.py
Normal file
118
colossalai/legacy/inference/tensor_parallel/batch_infer_state.py
Normal file
@@ -0,0 +1,118 @@
|
||||
# might want to consider combine with InferenceConfig in colossalai/ppinference/inference_config.py later
|
||||
from dataclasses import dataclass
|
||||
|
||||
import torch
|
||||
from transformers.tokenization_utils_base import BatchEncoding
|
||||
|
||||
from .kvcache_manager import MemoryManager
|
||||
|
||||
|
||||
# adapted from: lightllm/server/router/model_infer/infer_batch.py
|
||||
@dataclass
|
||||
class BatchInferState:
|
||||
r"""
|
||||
Information to be passed and used for a batch of inputs during
|
||||
a single model forward
|
||||
"""
|
||||
batch_size: int
|
||||
max_len_in_batch: int
|
||||
|
||||
cache_manager: MemoryManager = None
|
||||
|
||||
block_loc: torch.Tensor = None
|
||||
start_loc: torch.Tensor = None
|
||||
seq_len: torch.Tensor = None
|
||||
past_key_values_len: int = None
|
||||
|
||||
is_context_stage: bool = False
|
||||
context_mem_index: torch.Tensor = None
|
||||
decode_is_contiguous: bool = None
|
||||
decode_mem_start: int = None
|
||||
decode_mem_end: int = None
|
||||
decode_mem_index: torch.Tensor = None
|
||||
decode_layer_id: int = None
|
||||
|
||||
device: torch.device = torch.device("cuda")
|
||||
|
||||
@property
|
||||
def total_token_num(self):
|
||||
# return self.batch_size * self.max_len_in_batch
|
||||
assert self.seq_len is not None and self.seq_len.size(0) > 0
|
||||
return int(torch.sum(self.seq_len))
|
||||
|
||||
def set_cache_manager(self, manager: MemoryManager):
|
||||
self.cache_manager = manager
|
||||
|
||||
# adapted from: https://github.com/ModelTC/lightllm/blob/28c1267cfca536b7b4f28e921e03de735b003039/lightllm/common/infer_utils.py#L1
|
||||
@staticmethod
|
||||
def init_block_loc(
|
||||
b_loc: torch.Tensor, seq_len: torch.Tensor, max_len_in_batch: int, alloc_mem_index: torch.Tensor
|
||||
):
|
||||
"""in-place update block loc mapping based on the sequence length of the inputs in current bath"""
|
||||
start_index = 0
|
||||
seq_len_numpy = seq_len.cpu().numpy()
|
||||
for i, cur_seq_len in enumerate(seq_len_numpy):
|
||||
b_loc[i, max_len_in_batch - cur_seq_len : max_len_in_batch] = alloc_mem_index[
|
||||
start_index : start_index + cur_seq_len
|
||||
]
|
||||
start_index += cur_seq_len
|
||||
return
|
||||
|
||||
@classmethod
|
||||
def init_from_batch(
|
||||
cls,
|
||||
batch: torch.Tensor,
|
||||
max_input_len: int,
|
||||
max_output_len: int,
|
||||
cache_manager: MemoryManager,
|
||||
):
|
||||
if not isinstance(batch, (BatchEncoding, dict, list, torch.Tensor)):
|
||||
raise TypeError(f"batch type {type(batch)} is not supported in prepare_batch_state")
|
||||
|
||||
input_ids_list = None
|
||||
attention_mask = None
|
||||
|
||||
if isinstance(batch, (BatchEncoding, dict)):
|
||||
input_ids_list = batch["input_ids"]
|
||||
attention_mask = batch["attention_mask"]
|
||||
else:
|
||||
input_ids_list = batch
|
||||
if isinstance(input_ids_list[0], int): # for a single input
|
||||
input_ids_list = [input_ids_list]
|
||||
attention_mask = [attention_mask] if attention_mask is not None else attention_mask
|
||||
|
||||
batch_size = len(input_ids_list)
|
||||
|
||||
seq_start_indexes = torch.zeros(batch_size, dtype=torch.int32, device="cuda")
|
||||
seq_lengths = torch.zeros(batch_size, dtype=torch.int32, device="cuda")
|
||||
start_index = 0
|
||||
|
||||
max_len_in_batch = -1
|
||||
if isinstance(batch, (BatchEncoding, dict)):
|
||||
for i, attn_mask in enumerate(attention_mask):
|
||||
curr_seq_len = len(attn_mask)
|
||||
seq_lengths[i] = curr_seq_len
|
||||
seq_start_indexes[i] = start_index
|
||||
start_index += curr_seq_len
|
||||
max_len_in_batch = curr_seq_len if curr_seq_len > max_len_in_batch else max_len_in_batch
|
||||
else:
|
||||
length = max(len(input_id) for input_id in input_ids_list)
|
||||
for i, input_ids in enumerate(input_ids_list):
|
||||
curr_seq_len = length
|
||||
seq_lengths[i] = curr_seq_len
|
||||
seq_start_indexes[i] = start_index
|
||||
start_index += curr_seq_len
|
||||
max_len_in_batch = curr_seq_len if curr_seq_len > max_len_in_batch else max_len_in_batch
|
||||
block_loc = torch.zeros((batch_size, max_input_len + max_output_len), dtype=torch.long, device="cuda")
|
||||
|
||||
return cls(
|
||||
batch_size=batch_size,
|
||||
max_len_in_batch=max_len_in_batch,
|
||||
seq_len=seq_lengths.to("cuda"),
|
||||
start_loc=seq_start_indexes.to("cuda"),
|
||||
block_loc=block_loc,
|
||||
decode_layer_id=0,
|
||||
past_key_values_len=0,
|
||||
is_context_stage=True,
|
||||
cache_manager=cache_manager,
|
||||
)
|
478
colossalai/legacy/inference/tensor_parallel/engine.py
Normal file
478
colossalai/legacy/inference/tensor_parallel/engine.py
Normal file
@@ -0,0 +1,478 @@
|
||||
from typing import Any, Callable, List, Optional, Union
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from transformers import BloomForCausalLM, LlamaForCausalLM
|
||||
from transformers.generation import GenerationConfig
|
||||
from transformers.generation.stopping_criteria import StoppingCriteriaList
|
||||
from transformers.tokenization_utils_base import BatchEncoding
|
||||
|
||||
from colossalai.shardformer import ShardConfig, ShardFormer
|
||||
from colossalai.shardformer.policies.auto_policy import get_autopolicy
|
||||
|
||||
from .batch_infer_state import BatchInferState
|
||||
from .kvcache_manager import MemoryManager
|
||||
|
||||
# from dynamic_batching.infer_batch import InferBatch
|
||||
|
||||
DP_AXIS, PP_AXIS, TP_AXIS = 0, 1, 2
|
||||
|
||||
_supported_models = [
|
||||
"LlamaForCausalLM",
|
||||
"LlamaModel",
|
||||
"BloomForCausalLM",
|
||||
"ChatGLMModel",
|
||||
"ChatGLMForConditionalGeneration",
|
||||
"LlamaGPTQForCausalLM",
|
||||
"BloomGPTQForCausalLM",
|
||||
]
|
||||
|
||||
|
||||
class TPInferEngine:
|
||||
"""Engine class for tensor parallel inference.
|
||||
|
||||
Args:
|
||||
model (Module): original model, e.g. huggingface CausalLM
|
||||
shard_config (ShardConfig): The config for sharding original model
|
||||
max_batch_size (int): maximum batch size
|
||||
max_input_len (int): maximum input length of sequence
|
||||
max_output_len (int): maximum output length of output tokens
|
||||
dtype (torch.dtype): datatype used to init KV cache space
|
||||
device (str): device the KV cache of engine to be initialized on
|
||||
|
||||
Examples:
|
||||
>>> # define model and shard config for your inference
|
||||
>>> model = ...
|
||||
>>> generate_kwargs = ...
|
||||
>>> shard_config = ShardConfig(enable_tensor_parallelism=True, extra_kwargs={"inference_only": True})
|
||||
>>> infer_engine = TPInferEngine(model, shard_config, MAX_BATCH_SIZE, MAX_INPUT_LEN, MAX_OUTPUT_LEN)
|
||||
>>> outputs = infer_engine.generate(input_ids, **generate_kwargs)
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model: nn.Module,
|
||||
shard_config: ShardConfig,
|
||||
max_batch_size: int,
|
||||
max_input_len: int,
|
||||
max_output_len: int,
|
||||
dtype: torch.dtype = torch.float16,
|
||||
device: str = "cuda",
|
||||
) -> None:
|
||||
self.max_batch_size = max_batch_size
|
||||
self.max_input_len = max_input_len
|
||||
self.max_output_len = max_output_len
|
||||
self.max_total_token_num = self.max_batch_size * (self.max_input_len + self.max_output_len)
|
||||
# Constraints relatable with specs of devices and model
|
||||
# This may change into an optional arg in the future
|
||||
assert self.max_batch_size <= 64, "Max batch size exceeds the constraint"
|
||||
assert self.max_input_len + self.max_output_len <= 4096, "Max length exceeds the constraint"
|
||||
|
||||
self.dtype = dtype
|
||||
|
||||
self.head_dim = model.config.hidden_size // model.config.num_attention_heads
|
||||
self.head_num = model.config.num_attention_heads
|
||||
num_hidden_layers = (
|
||||
model.config.num_hidden_layers if hasattr(model.config, "num_hidden_layers") else model.config.num_layers
|
||||
)
|
||||
self.layer_num = num_hidden_layers
|
||||
|
||||
self.multi_query_group_num = model.config.num_attention_heads
|
||||
# default to attention_heads
|
||||
if hasattr(model.config, "multi_query_attention"):
|
||||
self.multi_query_attention = getattr(model.config, "multi_query_attention")
|
||||
|
||||
if hasattr(model.config, "multi_query_group_num"):
|
||||
self.multi_query_group_num = getattr(model.config, "multi_query_group_num")
|
||||
|
||||
if hasattr(model.config, "num_key_value_heads"):
|
||||
self.multi_query_group_num = getattr(model.config, "num_key_value_heads")
|
||||
|
||||
self.tp_size = -1 # to be set with given shard config in self.prepare_shard_config
|
||||
self.cache_manager = None
|
||||
|
||||
self.max_dq_buffer_size = 1
|
||||
self.max_inner_outer_dim = 1
|
||||
self.gptq_temp_state_buffer = None
|
||||
self.gptq_temp_dq_buffer = None
|
||||
self.bits = -1
|
||||
self.use_act_order = False
|
||||
|
||||
self.shard_config = shard_config
|
||||
self.model = None
|
||||
self.cache = {}
|
||||
|
||||
# optimize the original model by sharding with ShardFormer
|
||||
self._optimize_model(model=model.to(device))
|
||||
|
||||
def _init_manager(self) -> None:
|
||||
assert self.tp_size >= 1, "TP size not initialized without providing a valid ShardConfig"
|
||||
assert self.head_num % self.tp_size == 0, f"Cannot shard {self.head_num} heads with tp size {self.tp_size}"
|
||||
self.head_num //= self.tp_size # update sharded number of heads
|
||||
|
||||
if hasattr(self, "multi_query_attention"):
|
||||
# NOTE the logic of MQA tensor parallelism should be specified.
|
||||
assert (
|
||||
self.multi_query_group_num % self.tp_size == 0
|
||||
), f"Cannot shard {self.multi_query_group_num} query groups with tp size {self.tp_size}"
|
||||
self.cache_manager = MemoryManager(
|
||||
self.max_total_token_num,
|
||||
self.dtype,
|
||||
self.multi_query_group_num // self.tp_size,
|
||||
self.head_dim,
|
||||
self.layer_num,
|
||||
)
|
||||
else:
|
||||
self.cache_manager = MemoryManager(
|
||||
self.max_total_token_num, self.dtype, self.head_num, self.head_dim, self.layer_num
|
||||
)
|
||||
|
||||
def _post_init_gptq_buffer(self, model: nn.Module) -> None:
|
||||
from colossalai.inference.quant.gptq.cai_gptq import CaiQuantLinear
|
||||
|
||||
HAS_GPTQ_CUDA = False
|
||||
try:
|
||||
from colossalai.kernel.op_builder.gptq import GPTQBuilder
|
||||
|
||||
gptq_cuda = GPTQBuilder().load()
|
||||
HAS_GPTQ_CUDA = True
|
||||
except ImportError:
|
||||
warnings.warn("CUDA gptq is not installed")
|
||||
HAS_GPTQ_CUDA = False
|
||||
|
||||
for name, submodule in model.named_modules():
|
||||
if isinstance(submodule, CaiQuantLinear):
|
||||
self.max_dq_buffer_size = max(self.max_dq_buffer_size, submodule.qweight.numel() * 8)
|
||||
|
||||
if self.use_act_order:
|
||||
self.max_inner_outer_dim = max(
|
||||
self.max_inner_outer_dim, submodule.infeatures, submodule.outfeatures
|
||||
)
|
||||
self.bits = submodule.bits
|
||||
if not (HAS_GPTQ_CUDA and self.bits == 4):
|
||||
return
|
||||
|
||||
max_input_len = 1
|
||||
if self.use_act_order:
|
||||
max_input_len = self.max_input_len
|
||||
# The temp_state buffer is required to reorder X in the act-order case.
|
||||
# The temp_dq buffer is required to dequantize weights when using cuBLAS, typically for the prefill.
|
||||
self.gptq_temp_state_buffer = torch.zeros(
|
||||
(max_input_len, self.max_inner_outer_dim), dtype=torch.float16, device=torch.cuda.current_device()
|
||||
)
|
||||
self.gptq_temp_dq_buffer = torch.zeros(
|
||||
(1, self.max_dq_buffer_size), dtype=torch.float16, device=torch.cuda.current_device()
|
||||
)
|
||||
|
||||
gptq_cuda.prepare_buffers(
|
||||
torch.device(torch.cuda.current_device()), self.gptq_temp_state_buffer, self.gptq_temp_dq_buffer
|
||||
)
|
||||
# Using the default from exllama repo here.
|
||||
matmul_recons_thd = 8
|
||||
matmul_fused_remap = False
|
||||
matmul_no_half2 = False
|
||||
gptq_cuda.set_tuning_params(matmul_recons_thd, matmul_fused_remap, matmul_no_half2)
|
||||
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
def _optimize_model(self, model: nn.Module) -> None:
|
||||
"""
|
||||
Optimize the original model by sharding with ShardFormer.
|
||||
In further generation, use the sharded model instead of original model.
|
||||
"""
|
||||
# NOTE we will change to use an inference config later with additional attrs we want
|
||||
assert self.shard_config.extra_kwargs["inference_only"] is True
|
||||
shardformer = ShardFormer(shard_config=self.shard_config)
|
||||
self._prepare_with_shard_config(shard_config=self.shard_config)
|
||||
self._shard_model_by(shardformer, model)
|
||||
|
||||
def _prepare_with_shard_config(self, shard_config: Optional[ShardConfig] = None) -> ShardConfig:
|
||||
"""Prepare the engine with a given ShardConfig.
|
||||
|
||||
Args:
|
||||
shard_config (ShardConfig): shard config given to specify settings of the engine.
|
||||
If not provided, a default ShardConfig with tp size 1 will be created.
|
||||
"""
|
||||
self.tp_size = 1
|
||||
if shard_config is None:
|
||||
shard_config = ShardConfig(
|
||||
tensor_parallel_process_group=None,
|
||||
pipeline_stage_manager=None,
|
||||
enable_tensor_parallelism=False,
|
||||
enable_fused_normalization=False,
|
||||
enable_all_optimization=False,
|
||||
enable_flash_attention=False,
|
||||
enable_jit_fused=False,
|
||||
extra_kwargs={"inference_only": True},
|
||||
)
|
||||
else:
|
||||
shard_config.extra_kwargs = {"inference_only": True}
|
||||
shard_config.pipeline_stage_manager = None
|
||||
if shard_config.enable_tensor_parallelism:
|
||||
self.tp_size = shard_config.tensor_parallel_size
|
||||
self._init_manager()
|
||||
|
||||
return shard_config
|
||||
|
||||
def _shard_model_by(self, shardformer: ShardFormer, model: nn.Module) -> None:
|
||||
"""Shard original model by the given ShardFormer and store the sharded model."""
|
||||
assert (
|
||||
self.tp_size == shardformer.shard_config.tensor_parallel_size
|
||||
), "Discrepancy between the tp size of TPInferEngine and the tp size of shard config"
|
||||
model_name = model.__class__.__name__
|
||||
assert model_name in self.supported_models, f"Unsupported model cls {model_name} for TP inference."
|
||||
if self.shard_config.extra_kwargs.get("inference_gptq", False):
|
||||
model = model.model
|
||||
policy = get_autopolicy(model, shard_config=self.shard_config)
|
||||
self.model, _ = shardformer.optimize(model, policy)
|
||||
if self.shard_config.extra_kwargs.get("inference_gptq", False):
|
||||
self._post_init_gptq_buffer(self.model)
|
||||
|
||||
self.model = self.model.cuda()
|
||||
|
||||
@property
|
||||
def supported_models(self) -> List[str]:
|
||||
return _supported_models
|
||||
|
||||
def generate(self, input_tokens: Union[BatchEncoding, dict, list, torch.Tensor], **generate_kwargs) -> torch.Tensor:
|
||||
"""Generate token sequence.
|
||||
|
||||
Args:
|
||||
input_tokens: could be one of the following types
|
||||
1. BatchEncoding or dict (e.g. tokenizer batch_encode)
|
||||
2. list of input token ids (e.g. appended result of tokenizer encode)
|
||||
3. torch.Tensor (e.g. tokenizer encode with return_tensors='pt')
|
||||
Returns:
|
||||
torch.Tensor: The returned sequence is given inputs + generated_tokens.
|
||||
"""
|
||||
if isinstance(input_tokens, torch.Tensor):
|
||||
input_tokens = dict(input_ids=input_tokens, attention_mask=torch.ones_like(input_tokens, dtype=torch.bool))
|
||||
for t in input_tokens:
|
||||
if torch.is_tensor(input_tokens[t]):
|
||||
input_tokens[t] = input_tokens[t].cuda()
|
||||
if "max_new_tokens" not in generate_kwargs:
|
||||
generate_kwargs.update(max_new_tokens=self.max_output_len)
|
||||
|
||||
return self._generate_by_set_infer_state(input_tokens, **generate_kwargs)
|
||||
|
||||
def prepare_batch_state(self, inputs) -> BatchInferState:
|
||||
"""
|
||||
Create and prepare BatchInferState used for inference during model forwrad,
|
||||
by processing each sequence of the given inputs.
|
||||
|
||||
Args:
|
||||
inputs: should be one of the following types
|
||||
1. BatchEncoding or dict (e.g. tokenizer batch_encode)
|
||||
2. list of input token ids (e.g. appended result of tokenizer encode)
|
||||
3. torch.Tensor (e.g. tokenizer encode with return_tensors='pt')
|
||||
NOTE For torch.Tensor inputs representing a batch of inputs, we are unable to retrieve
|
||||
the actual length (e.g. number of tokens) of each input without attention mask
|
||||
Hence, for torch.Tensor with shape [bs, l] where bs > 1, we will assume
|
||||
all the inputs in the batch has the maximum length l
|
||||
Returns:
|
||||
BatchInferState: the states for the current batch during inference
|
||||
"""
|
||||
if not isinstance(inputs, (BatchEncoding, dict, list, torch.Tensor)):
|
||||
raise TypeError(f"inputs type {type(inputs)} is not supported in prepare_batch_state")
|
||||
|
||||
input_ids_list = None
|
||||
attention_mask = None
|
||||
|
||||
if isinstance(inputs, (BatchEncoding, dict)):
|
||||
input_ids_list = inputs["input_ids"]
|
||||
attention_mask = inputs["attention_mask"]
|
||||
else:
|
||||
input_ids_list = inputs
|
||||
if isinstance(input_ids_list[0], int): # for a single input
|
||||
input_ids_list = [input_ids_list]
|
||||
attention_mask = [attention_mask] if attention_mask is not None else attention_mask
|
||||
|
||||
batch_size = len(input_ids_list)
|
||||
seq_start_indexes = torch.zeros(batch_size, dtype=torch.int32, device="cuda")
|
||||
seq_lengths = torch.zeros(batch_size, dtype=torch.int32, device="cuda")
|
||||
start_index = 0
|
||||
|
||||
max_len_in_batch = -1
|
||||
if isinstance(inputs, (BatchEncoding, dict)):
|
||||
for i, attn_mask in enumerate(attention_mask):
|
||||
curr_seq_len = len(attn_mask)
|
||||
# if isinstance(attn_mask, torch.Tensor):
|
||||
# curr_seq_len = int(torch.sum(attn_mask))
|
||||
# else:
|
||||
# curr_seq_len = int(sum(attn_mask))
|
||||
seq_lengths[i] = curr_seq_len
|
||||
seq_start_indexes[i] = start_index
|
||||
start_index += curr_seq_len
|
||||
max_len_in_batch = curr_seq_len if curr_seq_len > max_len_in_batch else max_len_in_batch
|
||||
else:
|
||||
length = max(len(input_id) for input_id in input_ids_list)
|
||||
for i, input_ids in enumerate(input_ids_list):
|
||||
curr_seq_len = length
|
||||
seq_lengths[i] = curr_seq_len
|
||||
seq_start_indexes[i] = start_index
|
||||
start_index += curr_seq_len
|
||||
max_len_in_batch = curr_seq_len if curr_seq_len > max_len_in_batch else max_len_in_batch
|
||||
|
||||
block_loc = torch.empty((batch_size, self.max_input_len + self.max_output_len), dtype=torch.long, device="cuda")
|
||||
batch_infer_state = BatchInferState(batch_size, max_len_in_batch)
|
||||
batch_infer_state.seq_len = seq_lengths.to("cuda")
|
||||
batch_infer_state.start_loc = seq_start_indexes.to("cuda")
|
||||
batch_infer_state.block_loc = block_loc
|
||||
batch_infer_state.decode_layer_id = 0
|
||||
batch_infer_state.past_key_values_len = 0
|
||||
batch_infer_state.is_context_stage = True
|
||||
batch_infer_state.set_cache_manager(self.cache_manager)
|
||||
|
||||
return batch_infer_state
|
||||
|
||||
@torch.no_grad()
|
||||
def _generate_by_set_infer_state(self, input_tokens, **generate_kwargs) -> torch.Tensor:
|
||||
"""
|
||||
Generate output tokens by setting BatchInferState as an attribute to the model and calling model.generate
|
||||
|
||||
Args:
|
||||
inputs: should be one of the following types
|
||||
1. BatchEncoding or dict (e.g. tokenizer batch_encode)
|
||||
2. list of input token ids (e.g. appended result of tokenizer encode)
|
||||
3. torch.Tensor (e.g. tokenizer encode with return_tensors='pt')
|
||||
"""
|
||||
|
||||
# for testing, always use sharded model
|
||||
assert self.model is not None, "sharded model does not exist"
|
||||
|
||||
batch_infer_state = self.prepare_batch_state(input_tokens)
|
||||
assert batch_infer_state.max_len_in_batch <= self.max_input_len, "max length in batch exceeds limit"
|
||||
|
||||
# set BatchInferState for the current batch as attr to model
|
||||
# NOTE this is not a preferable way to pass BatchInferState during inference
|
||||
# we might want to rewrite generate function (e.g. _generate_by_pass_infer_state)
|
||||
# and pass BatchInferState via model forward
|
||||
model = self.model
|
||||
if isinstance(model, LlamaForCausalLM):
|
||||
model = self.model.model
|
||||
elif isinstance(model, BloomForCausalLM):
|
||||
model = self.model.transformer
|
||||
setattr(model, "infer_state", batch_infer_state)
|
||||
|
||||
outputs = self.model.generate(**input_tokens, **generate_kwargs, early_stopping=False)
|
||||
|
||||
# NOTE In future development, we're going to let the scheduler to handle the cache,
|
||||
# instead of freeing space explicitly at the end of generation
|
||||
self.cache_manager.free_all()
|
||||
|
||||
return outputs
|
||||
|
||||
# TODO might want to implement the func that generates output tokens by passing BatchInferState
|
||||
# as an arg into model.forward.
|
||||
# It requires rewriting model generate and replacing model forward.
|
||||
@torch.no_grad()
|
||||
def _generate_by_pass_infer_state(
|
||||
self,
|
||||
input_tokens,
|
||||
max_out_length: int,
|
||||
generation_config: Optional[GenerationConfig] = None,
|
||||
stopping_criteria: Optional[StoppingCriteriaList] = None,
|
||||
prepare_inputs_fn: Optional[Callable[[torch.Tensor, Any], dict]] = None,
|
||||
**model_kwargs,
|
||||
) -> torch.Tensor:
|
||||
raise NotImplementedError("generate by passing BatchInferState is not implemented.")
|
||||
|
||||
# might want to use in rewritten generate method: use after model.forward
|
||||
# BatchInferState is created and kept during generation
|
||||
# after each iter of model forward, we should update BatchInferState
|
||||
def _update_batch_state(self, infer_state: Optional[BatchInferState]) -> None:
|
||||
batch_size = infer_state.batch_size
|
||||
device = infer_state.start_loc.device
|
||||
infer_state.start_loc = infer_state.start_loc + torch.arange(0, batch_size, dtype=torch.int32, device=device)
|
||||
infer_state.seq_len += 1
|
||||
|
||||
@torch.no_grad()
|
||||
def forward(self, batch_id, is_prefill):
|
||||
"""
|
||||
Forward is used in Dynamic Batching Manager
|
||||
"""
|
||||
batch = self.cache.pop(batch_id)
|
||||
if is_prefill:
|
||||
input_ = torch.tensor(batch.all_input_ids).cuda()
|
||||
else:
|
||||
input_ = batch.input_ids.reshape(len(batch), 1)
|
||||
|
||||
batch_args = {
|
||||
"batch_size": len(batch),
|
||||
"max_len_in_batch": batch.nopad_max_len_in_batch,
|
||||
"block_loc": batch.nopad_b_loc,
|
||||
"start_loc": batch.nopad_b_start_loc,
|
||||
"seq_len": batch.nopad_b_seq_len,
|
||||
"cache_manager": batch.cache_manager,
|
||||
"is_context_stage": is_prefill,
|
||||
}
|
||||
|
||||
infer_state = BatchInferState(**batch_args)
|
||||
model = self.model
|
||||
if isinstance(model, LlamaForCausalLM):
|
||||
model = self.model.model
|
||||
elif isinstance(model, BloomForCausalLM):
|
||||
model = self.model.transformer
|
||||
|
||||
setattr(model, "infer_state", infer_state)
|
||||
output = self.model.forward(input_ids=input_)
|
||||
logits = output.logits
|
||||
# bsz, seq_len, vocab_size
|
||||
prob_out = torch.softmax(
|
||||
logits[
|
||||
:,
|
||||
-1,
|
||||
],
|
||||
dim=-1,
|
||||
).squeeze(1)
|
||||
# prob_out: bsz, vocab_size
|
||||
predict_ids = torch.argmax(prob_out, dim=-1, keepdim=True)
|
||||
prob_out = torch.log(prob_out).detach().cpu().numpy()
|
||||
predict_ids = predict_ids.detach().cpu().numpy()
|
||||
# [ batch_size, 1 ]
|
||||
|
||||
output_dict = {}
|
||||
new_input_ids = []
|
||||
for i, (r, all_input_ids, next_token_id, next_token_logprob) in enumerate(
|
||||
zip(batch.requests, batch.all_input_ids, predict_ids, prob_out)
|
||||
):
|
||||
next_token_id = int(next_token_id)
|
||||
next_token_logprob = next_token_logprob[next_token_id]
|
||||
# all_input_ids_tensor = torch.tensor(all_input_ids, dtype=torch.long, device="cuda")
|
||||
all_input_ids.append(next_token_id)
|
||||
# all_input_ids_tensor = None
|
||||
new_input_ids.append(next_token_id)
|
||||
batch.all_input_ids[i] = all_input_ids
|
||||
batch.input_lengths[i] += 1
|
||||
batch.out_token_id_counts[i][next_token_id] += 1
|
||||
metadata = {
|
||||
"id": int(next_token_id),
|
||||
"logprob": float(next_token_logprob),
|
||||
}
|
||||
output_dict[r["request_id"]] = (int(next_token_id), metadata)
|
||||
|
||||
batch.input_ids = torch.tensor(new_input_ids, dtype=torch.long).cuda()
|
||||
batch.nopad_total_token_num += len(batch)
|
||||
batch.nopad_max_len_in_batch += 1 # NOTE: we may repalce this
|
||||
self.cache[batch.batch_id] = batch
|
||||
return output_dict
|
||||
|
||||
@torch.no_grad()
|
||||
def _prefill_batch(self, batch_id):
|
||||
return self.forward(batch_id, is_prefill=True)
|
||||
|
||||
@torch.no_grad()
|
||||
def _decode_batch(self, batch_id):
|
||||
return self.forward(batch_id, is_prefill=False)
|
||||
|
||||
# might want to create a sequence pool
|
||||
# add a single request/sequence/input text at a time and record its length
|
||||
# In other words, store the actual length of input tokens representing a single input text
|
||||
# E.g. "Introduce landmarks in Beijing"
|
||||
# => add request
|
||||
# => record token length and other necessary information to be used
|
||||
# => engine hold all these necessary information until `generate` (or other name) is called,
|
||||
# => put information already recorded in batchinferstate and pass it to model forward
|
||||
# => clear records in engine
|
||||
def add_request():
|
||||
raise NotImplementedError()
|
106
colossalai/legacy/inference/tensor_parallel/kvcache_manager.py
Normal file
106
colossalai/legacy/inference/tensor_parallel/kvcache_manager.py
Normal file
@@ -0,0 +1,106 @@
|
||||
"""
|
||||
Refered/Modified from lightllm/common/mem_manager.py
|
||||
of the ModelTC/lightllm GitHub repository
|
||||
https://github.com/ModelTC/lightllm/blob/050af3ce65edca617e2f30ec2479397d5bb248c9/lightllm/common/mem_manager.py
|
||||
we slightly changed it to make it suitable for our colossal-ai shardformer TP-engine design.
|
||||
"""
|
||||
import torch
|
||||
from transformers.utils import logging
|
||||
|
||||
|
||||
class MemoryManager:
|
||||
r"""
|
||||
Manage token block indexes and allocate physical memory for key and value cache
|
||||
|
||||
Args:
|
||||
size: maximum token number used as the size of key and value buffer
|
||||
dtype: data type of cached key and value
|
||||
head_num: number of heads the memory manager is responsible for
|
||||
head_dim: embedded size per head
|
||||
layer_num: the number of layers in the model
|
||||
device: device used to store the key and value cache
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
size: int,
|
||||
dtype: torch.dtype,
|
||||
head_num: int,
|
||||
head_dim: int,
|
||||
layer_num: int,
|
||||
device: torch.device = torch.device("cuda"),
|
||||
):
|
||||
self.logger = logging.get_logger(__name__)
|
||||
self.available_size = size
|
||||
self.max_len_in_batch = 0
|
||||
self._init_mem_states(size, device)
|
||||
self._init_kv_buffers(size, device, dtype, head_num, head_dim, layer_num)
|
||||
|
||||
def _init_mem_states(self, size, device):
|
||||
"""Initialize tensors used to manage memory states"""
|
||||
self.mem_state = torch.ones((size,), dtype=torch.bool, device=device)
|
||||
self.mem_cum_sum = torch.empty((size,), dtype=torch.int32, device=device)
|
||||
self.indexes = torch.arange(0, size, dtype=torch.long, device=device)
|
||||
|
||||
def _init_kv_buffers(self, size, device, dtype, head_num, head_dim, layer_num):
|
||||
"""Initialize key buffer and value buffer on specified device"""
|
||||
self.key_buffer = [
|
||||
torch.empty((size, head_num, head_dim), dtype=dtype, device=device) for _ in range(layer_num)
|
||||
]
|
||||
self.value_buffer = [
|
||||
torch.empty((size, head_num, head_dim), dtype=dtype, device=device) for _ in range(layer_num)
|
||||
]
|
||||
|
||||
@torch.no_grad()
|
||||
def alloc(self, required_size):
|
||||
"""allocate space of required_size by providing indexes representing available physical spaces"""
|
||||
if required_size > self.available_size:
|
||||
self.logger.warning(f"No enough cache: required_size {required_size} " f"left_size {self.available_size}")
|
||||
return None
|
||||
torch.cumsum(self.mem_state, dim=0, dtype=torch.int32, out=self.mem_cum_sum)
|
||||
select_index = torch.logical_and(self.mem_cum_sum <= required_size, self.mem_state == 1)
|
||||
select_index = self.indexes[select_index]
|
||||
self.mem_state[select_index] = 0
|
||||
self.available_size -= len(select_index)
|
||||
return select_index
|
||||
|
||||
@torch.no_grad()
|
||||
def alloc_contiguous(self, required_size):
|
||||
"""allocate contiguous space of required_size"""
|
||||
if required_size > self.available_size:
|
||||
self.logger.warning(f"No enough cache: required_size {required_size} " f"left_size {self.available_size}")
|
||||
return None
|
||||
torch.cumsum(self.mem_state, dim=0, dtype=torch.int32, out=self.mem_cum_sum)
|
||||
sum_size = len(self.mem_cum_sum)
|
||||
loc_sums = (
|
||||
self.mem_cum_sum[required_size - 1 :]
|
||||
- self.mem_cum_sum[0 : sum_size - required_size + 1]
|
||||
+ self.mem_state[0 : sum_size - required_size + 1]
|
||||
)
|
||||
can_used_loc = self.indexes[0 : sum_size - required_size + 1][loc_sums == required_size]
|
||||
if can_used_loc.shape[0] == 0:
|
||||
self.logger.info(
|
||||
f"No enough contiguous cache: required_size {required_size} " f"left_size {self.available_size}"
|
||||
)
|
||||
return None
|
||||
start_loc = can_used_loc[0]
|
||||
select_index = self.indexes[start_loc : start_loc + required_size]
|
||||
self.mem_state[select_index] = 0
|
||||
self.available_size -= len(select_index)
|
||||
start = start_loc.item()
|
||||
end = start + required_size
|
||||
return select_index, start, end
|
||||
|
||||
@torch.no_grad()
|
||||
def free(self, free_index):
|
||||
"""free memory by updating memory states based on given indexes"""
|
||||
self.available_size += free_index.shape[0]
|
||||
self.mem_state[free_index] = 1
|
||||
|
||||
@torch.no_grad()
|
||||
def free_all(self):
|
||||
"""free all memory by updating memory states"""
|
||||
self.available_size = len(self.mem_state)
|
||||
self.mem_state[:] = 1
|
||||
self.max_len_in_batch = 0
|
||||
self.logger.info("freed all space of memory manager")
|
@@ -0,0 +1,5 @@
|
||||
from .bloom import BloomInferenceForwards
|
||||
from .chatglm2 import ChatGLM2InferenceForwards
|
||||
from .llama import LlamaInferenceForwards
|
||||
|
||||
__all__ = ["BloomInferenceForwards", "LlamaInferenceForwards", "ChatGLM2InferenceForwards"]
|
@@ -0,0 +1,67 @@
|
||||
"""
|
||||
Utils for model inference
|
||||
"""
|
||||
import os
|
||||
|
||||
import torch
|
||||
|
||||
from colossalai.kernel.triton.copy_kv_cache_dest import copy_kv_cache_to_dest
|
||||
|
||||
|
||||
def copy_kv_to_mem_cache(layer_id, key_buffer, value_buffer, context_mem_index, mem_manager):
|
||||
"""
|
||||
This function copies the key and value cache to the memory cache
|
||||
Args:
|
||||
layer_id : id of current layer
|
||||
key_buffer : key cache
|
||||
value_buffer : value cache
|
||||
context_mem_index : index of memory cache in kv cache manager
|
||||
mem_manager : cache manager
|
||||
"""
|
||||
copy_kv_cache_to_dest(key_buffer, context_mem_index, mem_manager.key_buffer[layer_id])
|
||||
copy_kv_cache_to_dest(value_buffer, context_mem_index, mem_manager.value_buffer[layer_id])
|
||||
|
||||
|
||||
def init_to_get_rotary(self, base=10000, use_elem=False):
|
||||
"""
|
||||
This function initializes the rotary positional embedding, it is compatible for all models and is called in ShardFormer
|
||||
Args:
|
||||
self : Model that holds the rotary positional embedding
|
||||
base : calculation arg
|
||||
use_elem : activated when using chatglm-based models
|
||||
"""
|
||||
self.config.head_dim_ = self.config.hidden_size // self.config.num_attention_heads
|
||||
if not hasattr(self.config, "rope_scaling"):
|
||||
rope_scaling_factor = 1.0
|
||||
else:
|
||||
rope_scaling_factor = self.config.rope_scaling.factor if self.config.rope_scaling is not None else 1.0
|
||||
|
||||
if hasattr(self.config, "max_sequence_length"):
|
||||
max_seq_len = self.config.max_sequence_length
|
||||
elif hasattr(self.config, "max_position_embeddings"):
|
||||
max_seq_len = self.config.max_position_embeddings * rope_scaling_factor
|
||||
else:
|
||||
max_seq_len = 2048 * rope_scaling_factor
|
||||
base = float(base)
|
||||
|
||||
# NTK ref: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
|
||||
ntk_alpha = os.environ.get("INFER_NTK_ALPHA", None)
|
||||
|
||||
if ntk_alpha is not None:
|
||||
ntk_alpha = float(ntk_alpha)
|
||||
assert ntk_alpha >= 1, "NTK alpha must be greater than or equal to 1"
|
||||
if ntk_alpha > 1:
|
||||
print(f"Note: NTK enabled, alpha set to {ntk_alpha}")
|
||||
max_seq_len *= ntk_alpha
|
||||
base = base * (ntk_alpha ** (self.head_dim_ / (self.head_dim_ - 2))) # Base change formula
|
||||
|
||||
n_elem = self.config.head_dim_
|
||||
if use_elem:
|
||||
n_elem //= 2
|
||||
|
||||
inv_freq = 1.0 / (base ** (torch.arange(0, n_elem, 2, device="cpu", dtype=torch.float32) / n_elem))
|
||||
t = torch.arange(max_seq_len + 1024 * 64, device="cpu", dtype=torch.float32) / rope_scaling_factor
|
||||
freqs = torch.outer(t, inv_freq)
|
||||
|
||||
self._cos_cached = torch.cos(freqs).to(torch.float16).cuda()
|
||||
self._sin_cached = torch.sin(freqs).to(torch.float16).cuda()
|
540
colossalai/legacy/inference/tensor_parallel/modeling/bloom.py
Normal file
540
colossalai/legacy/inference/tensor_parallel/modeling/bloom.py
Normal file
@@ -0,0 +1,540 @@
|
||||
import math
|
||||
import warnings
|
||||
from typing import Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
from torch.nn import CrossEntropyLoss
|
||||
from torch.nn import functional as F
|
||||
from transformers.models.bloom.modeling_bloom import (
|
||||
BaseModelOutputWithPastAndCrossAttentions,
|
||||
BloomAttention,
|
||||
BloomBlock,
|
||||
BloomForCausalLM,
|
||||
BloomModel,
|
||||
CausalLMOutputWithCrossAttentions,
|
||||
)
|
||||
from transformers.utils import logging
|
||||
|
||||
from colossalai.inference.tensor_parallel.batch_infer_state import BatchInferState
|
||||
from colossalai.kernel.triton import bloom_context_attn_fwd, copy_kv_cache_to_dest, token_attention_fwd
|
||||
|
||||
try:
|
||||
from lightllm.models.bloom.triton_kernel.context_flashattention_nopad import (
|
||||
context_attention_fwd as lightllm_bloom_context_attention_fwd,
|
||||
)
|
||||
|
||||
HAS_LIGHTLLM_KERNEL = True
|
||||
except:
|
||||
HAS_LIGHTLLM_KERNEL = False
|
||||
|
||||
|
||||
def generate_alibi(n_head, dtype=torch.float16):
|
||||
"""
|
||||
This method is adapted from `_generate_alibi` function
|
||||
in `lightllm/models/bloom/layer_weights/transformer_layer_weight.py`
|
||||
of the ModelTC/lightllm GitHub repository.
|
||||
This method is originally the `build_alibi_tensor` function
|
||||
in `transformers/models/bloom/modeling_bloom.py`
|
||||
of the huggingface/transformers GitHub repository.
|
||||
"""
|
||||
|
||||
def get_slopes_power_of_2(n):
|
||||
start = 2 ** (-(2 ** -(math.log2(n) - 3)))
|
||||
return [start * start**i for i in range(n)]
|
||||
|
||||
def get_slopes(n):
|
||||
if math.log2(n).is_integer():
|
||||
return get_slopes_power_of_2(n)
|
||||
else:
|
||||
closest_power_of_2 = 2 ** math.floor(math.log2(n))
|
||||
slopes_power_of_2 = get_slopes_power_of_2(closest_power_of_2)
|
||||
slopes_double = get_slopes(2 * closest_power_of_2)
|
||||
slopes_combined = slopes_power_of_2 + slopes_double[0::2][: n - closest_power_of_2]
|
||||
return slopes_combined
|
||||
|
||||
slopes = get_slopes(n_head)
|
||||
return torch.tensor(slopes, dtype=dtype)
|
||||
|
||||
|
||||
class BloomInferenceForwards:
|
||||
"""
|
||||
This class serves a micro library for bloom inference forwards.
|
||||
We intend to replace the forward methods for BloomForCausalLM, BloomModel, BloomBlock, and BloomAttention,
|
||||
as well as prepare_inputs_for_generation method for BloomForCausalLM.
|
||||
For future improvement, we might want to skip replacing methods for BloomForCausalLM,
|
||||
and call BloomModel.forward iteratively in TpInferEngine
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
def bloom_model_forward(
|
||||
self: BloomModel,
|
||||
input_ids: Optional[torch.LongTensor] = None,
|
||||
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
head_mask: Optional[torch.LongTensor] = None,
|
||||
inputs_embeds: Optional[torch.LongTensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
infer_state: Optional[BatchInferState] = None,
|
||||
**deprecated_arguments,
|
||||
) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]:
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
if deprecated_arguments.pop("position_ids", False) is not False:
|
||||
# `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
|
||||
warnings.warn(
|
||||
"`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore"
|
||||
" passing `position_ids`.",
|
||||
FutureWarning,
|
||||
)
|
||||
if len(deprecated_arguments) > 0:
|
||||
raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")
|
||||
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = (
|
||||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
)
|
||||
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
if input_ids is not None and inputs_embeds is not None:
|
||||
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
||||
elif input_ids is not None:
|
||||
batch_size, seq_length = input_ids.shape
|
||||
elif inputs_embeds is not None:
|
||||
batch_size, seq_length, _ = inputs_embeds.shape
|
||||
else:
|
||||
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
||||
|
||||
# still need to keep past_key_values to fit original forward flow
|
||||
if past_key_values is None:
|
||||
past_key_values = tuple([None] * len(self.h))
|
||||
|
||||
# Prepare head mask if needed
|
||||
# 1.0 in head_mask indicate we keep the head
|
||||
# attention_probs has shape batch_size x num_heads x N x N
|
||||
# head_mask has shape n_layer x batch x num_heads x N x N
|
||||
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
|
||||
|
||||
if inputs_embeds is None:
|
||||
inputs_embeds = self.word_embeddings(input_ids)
|
||||
|
||||
hidden_states = self.word_embeddings_layernorm(inputs_embeds)
|
||||
|
||||
presents = () if use_cache else None
|
||||
all_self_attentions = () if output_attentions else None
|
||||
all_hidden_states = () if output_hidden_states else None
|
||||
|
||||
if self.gradient_checkpointing and self.training:
|
||||
if use_cache:
|
||||
logger.warning_once(
|
||||
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
||||
)
|
||||
use_cache = False
|
||||
|
||||
# NOTE determine if BatchInferState is passed in via arg
|
||||
# if not, get the attr binded to the model
|
||||
# We might wantto remove setattr later
|
||||
if infer_state is None:
|
||||
assert hasattr(self, "infer_state")
|
||||
infer_state = self.infer_state
|
||||
|
||||
# infer_state.cache_manager = self.cache_manager
|
||||
if infer_state.is_context_stage:
|
||||
past_key_values_length = 0
|
||||
else:
|
||||
past_key_values_length = infer_state.max_len_in_batch - 1
|
||||
|
||||
if use_cache and seq_length != 1:
|
||||
# prefill stage
|
||||
infer_state.is_context_stage = True # set prefill stage, notify attention layer
|
||||
infer_state.context_mem_index = infer_state.cache_manager.alloc(infer_state.total_token_num)
|
||||
BatchInferState.init_block_loc(
|
||||
infer_state.block_loc, infer_state.seq_len, seq_length, infer_state.context_mem_index
|
||||
)
|
||||
else:
|
||||
infer_state.is_context_stage = False
|
||||
alloc_mem = infer_state.cache_manager.alloc_contiguous(batch_size)
|
||||
if alloc_mem is not None:
|
||||
infer_state.decode_is_contiguous = True
|
||||
infer_state.decode_mem_index = alloc_mem[0]
|
||||
infer_state.decode_mem_start = alloc_mem[1]
|
||||
infer_state.decode_mem_end = alloc_mem[2]
|
||||
infer_state.block_loc[:, infer_state.max_len_in_batch - 1] = infer_state.decode_mem_index
|
||||
else:
|
||||
print(f" *** Encountered allocation non-contiguous")
|
||||
print(f" infer_state.max_len_in_batch : {infer_state.max_len_in_batch}")
|
||||
infer_state.decode_is_contiguous = False
|
||||
alloc_mem = infer_state.cache_manager.alloc(batch_size)
|
||||
infer_state.decode_mem_index = alloc_mem
|
||||
# infer_state.decode_key_buffer = torch.empty((batch_size, self.tp_head_num_, self.head_dim_), dtype=torch.float16, device="cuda")
|
||||
# infer_state.decode_value_buffer = torch.empty((batch_size, self.tp_head_num_, self.head_dim_), dtype=torch.float16, device="cuda")
|
||||
infer_state.block_loc[:, infer_state.max_len_in_batch - 1] = infer_state.decode_mem_index
|
||||
|
||||
if attention_mask is None:
|
||||
attention_mask = torch.ones((batch_size, infer_state.max_len_in_batch), device=hidden_states.device)
|
||||
else:
|
||||
attention_mask = attention_mask.to(hidden_states.device)
|
||||
|
||||
# NOTE revise: we might want to store a single 1D alibi(length is #heads) in model,
|
||||
# or store to BatchInferState to prevent re-calculating
|
||||
# When we have multiple process group (e.g. dp together with tp), we need to pass the pg to here
|
||||
# alibi = generate_alibi(self.num_heads).contiguous().cuda()
|
||||
tp_size = dist.get_world_size()
|
||||
curr_tp_rank = dist.get_rank()
|
||||
alibi = (
|
||||
generate_alibi(self.num_heads * tp_size)
|
||||
.contiguous()[curr_tp_rank * self.num_heads : (curr_tp_rank + 1) * self.num_heads]
|
||||
.cuda()
|
||||
)
|
||||
causal_mask = self._prepare_attn_mask(
|
||||
attention_mask,
|
||||
input_shape=(batch_size, seq_length),
|
||||
past_key_values_length=past_key_values_length,
|
||||
)
|
||||
|
||||
infer_state.decode_layer_id = 0
|
||||
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
|
||||
if output_hidden_states:
|
||||
all_hidden_states = all_hidden_states + (hidden_states,)
|
||||
|
||||
if self.gradient_checkpointing and self.training:
|
||||
# NOTE: currently our KV cache manager does not handle this condition
|
||||
def create_custom_forward(module):
|
||||
def custom_forward(*inputs):
|
||||
# None for past_key_value
|
||||
return module(*inputs, use_cache=use_cache, output_attentions=output_attentions)
|
||||
|
||||
return custom_forward
|
||||
|
||||
outputs = torch.utils.checkpoint.checkpoint(
|
||||
create_custom_forward(block),
|
||||
hidden_states,
|
||||
alibi,
|
||||
causal_mask,
|
||||
layer_past,
|
||||
head_mask[i],
|
||||
)
|
||||
else:
|
||||
outputs = block(
|
||||
hidden_states,
|
||||
layer_past=layer_past,
|
||||
attention_mask=causal_mask,
|
||||
head_mask=head_mask[i],
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
alibi=alibi,
|
||||
infer_state=infer_state,
|
||||
)
|
||||
|
||||
infer_state.decode_layer_id += 1
|
||||
hidden_states = outputs[0]
|
||||
if use_cache is True:
|
||||
presents = presents + (outputs[1],)
|
||||
|
||||
if output_attentions:
|
||||
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
|
||||
|
||||
# Add last hidden state
|
||||
hidden_states = self.ln_f(hidden_states)
|
||||
|
||||
if output_hidden_states:
|
||||
all_hidden_states = all_hidden_states + (hidden_states,)
|
||||
|
||||
# update indices of kv cache block
|
||||
# NOT READY FOR PRIME TIME
|
||||
# might want to remove this part, instead, better to pass the BatchInferState from model forward,
|
||||
# and update these information in engine.generate after model foward called
|
||||
infer_state.start_loc = infer_state.start_loc + torch.arange(0, batch_size, dtype=torch.int32, device="cuda")
|
||||
infer_state.seq_len += 1
|
||||
infer_state.max_len_in_batch += 1
|
||||
|
||||
if not return_dict:
|
||||
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
|
||||
|
||||
return BaseModelOutputWithPastAndCrossAttentions(
|
||||
last_hidden_state=hidden_states,
|
||||
past_key_values=presents, # should always be (None, None, ..., None)
|
||||
hidden_states=all_hidden_states,
|
||||
attentions=all_self_attentions,
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def bloom_for_causal_lm_forward(
|
||||
self: BloomForCausalLM,
|
||||
input_ids: Optional[torch.LongTensor] = None,
|
||||
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
head_mask: Optional[torch.Tensor] = None,
|
||||
inputs_embeds: Optional[torch.Tensor] = None,
|
||||
labels: Optional[torch.Tensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
infer_state: Optional[BatchInferState] = None,
|
||||
**deprecated_arguments,
|
||||
):
|
||||
r"""
|
||||
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||||
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
||||
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
||||
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
||||
"""
|
||||
logging.get_logger(__name__)
|
||||
|
||||
if deprecated_arguments.pop("position_ids", False) is not False:
|
||||
# `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
|
||||
warnings.warn(
|
||||
"`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore"
|
||||
" passing `position_ids`.",
|
||||
FutureWarning,
|
||||
)
|
||||
if len(deprecated_arguments) > 0:
|
||||
raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")
|
||||
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
transformer_outputs = BloomInferenceForwards.bloom_model_forward(
|
||||
self.transformer,
|
||||
input_ids,
|
||||
past_key_values=past_key_values,
|
||||
attention_mask=attention_mask,
|
||||
head_mask=head_mask,
|
||||
inputs_embeds=inputs_embeds,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict,
|
||||
infer_state=infer_state,
|
||||
)
|
||||
hidden_states = transformer_outputs[0]
|
||||
|
||||
lm_logits = self.lm_head(hidden_states)
|
||||
|
||||
loss = None
|
||||
if labels is not None:
|
||||
# move labels to correct device to enable model parallelism
|
||||
labels = labels.to(lm_logits.device)
|
||||
# Shift so that tokens < n predict n
|
||||
shift_logits = lm_logits[..., :-1, :].contiguous()
|
||||
shift_labels = labels[..., 1:].contiguous()
|
||||
batch_size, seq_length, vocab_size = shift_logits.shape
|
||||
# Flatten the tokens
|
||||
loss_fct = CrossEntropyLoss()
|
||||
loss = loss_fct(
|
||||
shift_logits.view(batch_size * seq_length, vocab_size), shift_labels.view(batch_size * seq_length)
|
||||
)
|
||||
|
||||
if not return_dict:
|
||||
output = (lm_logits,) + transformer_outputs[1:]
|
||||
return ((loss,) + output) if loss is not None else output
|
||||
|
||||
return CausalLMOutputWithCrossAttentions(
|
||||
loss=loss,
|
||||
logits=lm_logits,
|
||||
past_key_values=transformer_outputs.past_key_values,
|
||||
hidden_states=transformer_outputs.hidden_states,
|
||||
attentions=transformer_outputs.attentions,
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def bloom_for_causal_lm_prepare_inputs_for_generation(
|
||||
self: BloomForCausalLM,
|
||||
input_ids: torch.LongTensor,
|
||||
past_key_values: Optional[torch.Tensor] = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
inputs_embeds: Optional[torch.Tensor] = None,
|
||||
**kwargs,
|
||||
) -> dict:
|
||||
# only last token for input_ids if past is not None
|
||||
if past_key_values:
|
||||
input_ids = input_ids[:, -1].unsqueeze(-1)
|
||||
|
||||
# NOTE we won't use past key values here
|
||||
# the cache may be in the stardard format (e.g. in contrastive search), convert to bloom's format if needed
|
||||
# if past_key_values[0][0].shape[0] == input_ids.shape[0]:
|
||||
# past_key_values = self._convert_to_bloom_cache(past_key_values)
|
||||
|
||||
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
||||
if inputs_embeds is not None and past_key_values is None:
|
||||
model_inputs = {"inputs_embeds": inputs_embeds}
|
||||
else:
|
||||
model_inputs = {"input_ids": input_ids}
|
||||
|
||||
model_inputs.update(
|
||||
{
|
||||
"past_key_values": past_key_values,
|
||||
"use_cache": kwargs.get("use_cache"),
|
||||
"attention_mask": attention_mask,
|
||||
}
|
||||
)
|
||||
return model_inputs
|
||||
|
||||
@staticmethod
|
||||
def bloom_block_forward(
|
||||
self: BloomBlock,
|
||||
hidden_states: torch.Tensor,
|
||||
alibi: torch.Tensor,
|
||||
attention_mask: torch.Tensor,
|
||||
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
||||
head_mask: Optional[torch.Tensor] = None,
|
||||
use_cache: bool = False,
|
||||
output_attentions: bool = False,
|
||||
infer_state: Optional[BatchInferState] = None,
|
||||
):
|
||||
# hidden_states: [batch_size, seq_length, hidden_size]
|
||||
|
||||
# Layer norm at the beginning of the transformer layer.
|
||||
layernorm_output = self.input_layernorm(hidden_states)
|
||||
|
||||
# Layer norm post the self attention.
|
||||
if self.apply_residual_connection_post_layernorm:
|
||||
residual = layernorm_output
|
||||
else:
|
||||
residual = hidden_states
|
||||
|
||||
# Self attention.
|
||||
attn_outputs = self.self_attention(
|
||||
layernorm_output,
|
||||
residual,
|
||||
layer_past=layer_past,
|
||||
attention_mask=attention_mask,
|
||||
alibi=alibi,
|
||||
head_mask=head_mask,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
infer_state=infer_state,
|
||||
)
|
||||
|
||||
attention_output = attn_outputs[0]
|
||||
|
||||
outputs = attn_outputs[1:]
|
||||
|
||||
layernorm_output = self.post_attention_layernorm(attention_output)
|
||||
|
||||
# Get residual
|
||||
if self.apply_residual_connection_post_layernorm:
|
||||
residual = layernorm_output
|
||||
else:
|
||||
residual = attention_output
|
||||
|
||||
# MLP.
|
||||
output = self.mlp(layernorm_output, residual)
|
||||
|
||||
if use_cache:
|
||||
outputs = (output,) + outputs
|
||||
else:
|
||||
outputs = (output,) + outputs[1:]
|
||||
|
||||
return outputs # hidden_states, present, attentions
|
||||
|
||||
@staticmethod
|
||||
def bloom_attention_forward(
|
||||
self: BloomAttention,
|
||||
hidden_states: torch.Tensor,
|
||||
residual: torch.Tensor,
|
||||
alibi: torch.Tensor,
|
||||
attention_mask: torch.Tensor,
|
||||
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
||||
head_mask: Optional[torch.Tensor] = None,
|
||||
use_cache: bool = False,
|
||||
output_attentions: bool = False,
|
||||
infer_state: Optional[BatchInferState] = None,
|
||||
):
|
||||
fused_qkv = self.query_key_value(hidden_states) # [batch_size, seq_length, 3 x hidden_size]
|
||||
|
||||
# 3 x [batch_size, seq_length, num_heads, head_dim]
|
||||
(query_layer, key_layer, value_layer) = self._split_heads(fused_qkv)
|
||||
batch_size, q_length, H, D_HEAD = query_layer.shape
|
||||
k = key_layer.reshape(-1, H, D_HEAD) # batch_size * q_length, H, D_HEAD, q_lenth == 1
|
||||
v = value_layer.reshape(-1, H, D_HEAD) # batch_size * q_length, H, D_HEAD, q_lenth == 1
|
||||
|
||||
mem_manager = infer_state.cache_manager
|
||||
layer_id = infer_state.decode_layer_id
|
||||
|
||||
if infer_state.is_context_stage:
|
||||
# context process
|
||||
max_input_len = q_length
|
||||
b_start_loc = infer_state.start_loc
|
||||
b_seq_len = infer_state.seq_len[:batch_size]
|
||||
q = query_layer.reshape(-1, H, D_HEAD)
|
||||
|
||||
copy_kv_cache_to_dest(k, infer_state.context_mem_index, mem_manager.key_buffer[layer_id])
|
||||
copy_kv_cache_to_dest(v, infer_state.context_mem_index, mem_manager.value_buffer[layer_id])
|
||||
|
||||
# output = self.output[:batch_size*q_length, :, :]
|
||||
output = torch.empty_like(q)
|
||||
|
||||
if HAS_LIGHTLLM_KERNEL:
|
||||
lightllm_bloom_context_attention_fwd(q, k, v, output, alibi, b_start_loc, b_seq_len, max_input_len)
|
||||
else:
|
||||
bloom_context_attn_fwd(q, k, v, output, b_start_loc, b_seq_len, max_input_len, alibi)
|
||||
|
||||
context_layer = output.view(batch_size, q_length, H * D_HEAD)
|
||||
else:
|
||||
# query_layer = query_layer.transpose(1, 2).reshape(batch_size * self.num_heads, q_length, self.head_dim)
|
||||
# need shape: batch_size, H, D_HEAD (q_length == 1), input q shape : (batch_size, q_length(1), H, D_HEAD)
|
||||
assert q_length == 1, "for non-context process, we only support q_length == 1"
|
||||
q = query_layer.reshape(-1, H, D_HEAD)
|
||||
|
||||
if infer_state.decode_is_contiguous:
|
||||
# if decode is contiguous, then we copy to key cache and value cache in cache manager directly
|
||||
cache_k = infer_state.cache_manager.key_buffer[layer_id][
|
||||
infer_state.decode_mem_start : infer_state.decode_mem_end, :, :
|
||||
]
|
||||
cache_v = infer_state.cache_manager.value_buffer[layer_id][
|
||||
infer_state.decode_mem_start : infer_state.decode_mem_end, :, :
|
||||
]
|
||||
cache_k.copy_(k)
|
||||
cache_v.copy_(v)
|
||||
else:
|
||||
# if decode is not contiguous, use triton kernel to copy key and value cache
|
||||
# k, v shape: [batch_size, num_heads, head_dim/embed_size_per_head]
|
||||
copy_kv_cache_to_dest(k, infer_state.decode_mem_index, mem_manager.key_buffer[layer_id])
|
||||
copy_kv_cache_to_dest(v, infer_state.decode_mem_index, mem_manager.value_buffer[layer_id])
|
||||
|
||||
b_start_loc = infer_state.start_loc
|
||||
b_loc = infer_state.block_loc
|
||||
b_seq_len = infer_state.seq_len
|
||||
output = torch.empty_like(q)
|
||||
token_attention_fwd(
|
||||
q,
|
||||
mem_manager.key_buffer[layer_id],
|
||||
mem_manager.value_buffer[layer_id],
|
||||
output,
|
||||
b_loc,
|
||||
b_start_loc,
|
||||
b_seq_len,
|
||||
infer_state.max_len_in_batch,
|
||||
alibi,
|
||||
)
|
||||
|
||||
context_layer = output.view(batch_size, q_length, H * D_HEAD)
|
||||
|
||||
# NOTE: always set present as none for now, instead of returning past key value to the next decoding,
|
||||
# we create the past key value pair from the cache manager
|
||||
present = None
|
||||
|
||||
# aggregate results across tp ranks. See here: https://github.com/pytorch/pytorch/issues/76232
|
||||
if self.pretraining_tp > 1 and self.slow_but_exact:
|
||||
slices = self.hidden_size / self.pretraining_tp
|
||||
output_tensor = torch.zeros_like(context_layer)
|
||||
for i in range(self.pretraining_tp):
|
||||
output_tensor = output_tensor + F.linear(
|
||||
context_layer[:, :, int(i * slices) : int((i + 1) * slices)],
|
||||
self.dense.weight[:, int(i * slices) : int((i + 1) * slices)],
|
||||
)
|
||||
else:
|
||||
output_tensor = self.dense(context_layer)
|
||||
|
||||
# dropout is not required here during inference
|
||||
output_tensor = residual + output_tensor
|
||||
|
||||
outputs = (output_tensor, present)
|
||||
assert output_attentions is False, "we do not support output_attentions at this time"
|
||||
|
||||
return outputs
|
545
colossalai/legacy/inference/tensor_parallel/modeling/chatglm2.py
Normal file
545
colossalai/legacy/inference/tensor_parallel/modeling/chatglm2.py
Normal file
@@ -0,0 +1,545 @@
|
||||
import os
|
||||
from typing import Optional, Tuple
|
||||
|
||||
import torch
|
||||
from torch.nn import CrossEntropyLoss
|
||||
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
||||
|
||||
from colossalai.inference.tensor_parallel.batch_infer_state import BatchInferState
|
||||
from colossalai.kernel.triton.token_attention_kernel import Llama2TokenAttentionForwards
|
||||
from colossalai.shardformer.modeling.chatglm2_6b.modeling_chatglm import (
|
||||
ChatGLMForConditionalGeneration,
|
||||
ChatGLMModel,
|
||||
GLMBlock,
|
||||
GLMTransformer,
|
||||
SelfAttention,
|
||||
split_tensor_along_last_dim,
|
||||
)
|
||||
|
||||
from ._utils import copy_kv_to_mem_cache
|
||||
|
||||
try:
|
||||
from lightllm.models.chatglm2.triton_kernel.rotary_emb import rotary_emb_fwd as chatglm2_rotary_emb_fwd
|
||||
from lightllm.models.llama2.triton_kernel.context_flashattention_nopad import (
|
||||
context_attention_fwd as lightllm_llama2_context_attention_fwd,
|
||||
)
|
||||
|
||||
HAS_LIGHTLLM_KERNEL = True
|
||||
except:
|
||||
print("please install lightllm from source to run inference: https://github.com/ModelTC/lightllm")
|
||||
HAS_LIGHTLLM_KERNEL = False
|
||||
|
||||
|
||||
# This func is same as Llama model init_to_get_rotary, we should move them into _utils.py
|
||||
def _init_to_get_rotary(self, base=10000):
|
||||
self.config.head_dim_ = self.config.hidden_size // self.config.num_attention_heads
|
||||
if not hasattr(self.config, "rope_scaling"):
|
||||
rope_scaling_factor = 1.0
|
||||
else:
|
||||
rope_scaling_factor = self.config.rope_scaling.factor if self.config.rope_scaling is not None else 1.0
|
||||
if hasattr(self.config, "max_sequence_length"):
|
||||
max_seq_len = self.config.max_sequence_length
|
||||
elif hasattr(self.config, "max_position_embeddings"):
|
||||
max_seq_len = self.config.max_position_embeddings * rope_scaling_factor
|
||||
else:
|
||||
max_seq_len = 2048 * rope_scaling_factor
|
||||
base = float(base)
|
||||
|
||||
# NTK ref: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
|
||||
try:
|
||||
ntk_alpha = float(os.environ.get("INFER_NTK_ALPHA", 1))
|
||||
assert ntk_alpha >= 1
|
||||
if ntk_alpha > 1:
|
||||
print(f"Note: NTK enabled, alpha set to {ntk_alpha}")
|
||||
max_seq_len *= ntk_alpha
|
||||
base = base * (ntk_alpha ** (self.head_dim_ / (self.head_dim_ - 2))) # Base change formula
|
||||
except:
|
||||
pass
|
||||
n_elem = self.config.head_dim_ // 2
|
||||
inv_freq = 1.0 / (base ** (torch.arange(0, n_elem, 2, device="cpu", dtype=torch.float32) / n_elem))
|
||||
t = torch.arange(max_seq_len + 1024 * 64, device="cpu", dtype=torch.float32) / rope_scaling_factor
|
||||
freqs = torch.outer(t, inv_freq)
|
||||
|
||||
self._cos_cached = torch.cos(freqs).to(torch.float16).cuda()
|
||||
self._sin_cached = torch.sin(freqs).to(torch.float16).cuda()
|
||||
return
|
||||
|
||||
|
||||
def get_masks(self, input_ids, past_length, padding_mask=None):
|
||||
batch_size, seq_length = input_ids.shape
|
||||
full_attention_mask = torch.ones(batch_size, seq_length, seq_length, device=input_ids.device)
|
||||
full_attention_mask.tril_()
|
||||
if past_length:
|
||||
full_attention_mask = torch.cat(
|
||||
(
|
||||
torch.ones(batch_size, seq_length, past_length, device=input_ids.device),
|
||||
full_attention_mask,
|
||||
),
|
||||
dim=-1,
|
||||
)
|
||||
|
||||
if padding_mask is not None:
|
||||
full_attention_mask = full_attention_mask * padding_mask.unsqueeze(1)
|
||||
if not past_length and padding_mask is not None:
|
||||
full_attention_mask -= padding_mask.unsqueeze(-1) - 1
|
||||
full_attention_mask = (full_attention_mask < 0.5).bool()
|
||||
full_attention_mask.unsqueeze_(1)
|
||||
return full_attention_mask
|
||||
|
||||
|
||||
class ChatGLM2InferenceForwards:
|
||||
"""
|
||||
This class holds forwards for Chatglm2 inference.
|
||||
We intend to replace the forward methods for ChatGLMModel, ChatGLMEecoderLayer, and ChatGLMAttention.
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
def chatglm_for_conditional_generation_forward(
|
||||
self: ChatGLMForConditionalGeneration,
|
||||
input_ids: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.Tensor] = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
|
||||
inputs_embeds: Optional[torch.Tensor] = None,
|
||||
labels: Optional[torch.Tensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
return_last_logit: Optional[bool] = False,
|
||||
):
|
||||
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
infer_state = self.infer_state
|
||||
|
||||
if input_ids is not None and inputs_embeds is not None:
|
||||
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
||||
elif input_ids is not None:
|
||||
batch_size, seq_length = input_ids.shape
|
||||
elif inputs_embeds is not None:
|
||||
batch_size, seq_length, _ = inputs_embeds.shape
|
||||
else:
|
||||
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
||||
|
||||
if infer_state.is_context_stage:
|
||||
past_key_values_length = 0
|
||||
else:
|
||||
past_key_values_length = infer_state.max_len_in_batch - 1
|
||||
|
||||
seq_length_with_past = seq_length + past_key_values_length
|
||||
|
||||
# prefill stage at first
|
||||
if use_cache and seq_length != 1:
|
||||
infer_state.is_context_stage = True
|
||||
infer_state.context_mem_index = infer_state.cache_manager.alloc(infer_state.total_token_num)
|
||||
infer_state.init_block_loc(
|
||||
infer_state.block_loc, infer_state.seq_len, seq_length, infer_state.context_mem_index
|
||||
)
|
||||
else:
|
||||
infer_state.is_context_stage = False
|
||||
alloc_mem = infer_state.cache_manager.alloc_contiguous(batch_size)
|
||||
if alloc_mem is not None:
|
||||
infer_state.decode_is_contiguous = True
|
||||
infer_state.decode_mem_index = alloc_mem[0]
|
||||
infer_state.decode_mem_start = alloc_mem[1]
|
||||
infer_state.decode_mem_end = alloc_mem[2]
|
||||
infer_state.block_loc[:, seq_length_with_past - 1] = infer_state.decode_mem_index
|
||||
else:
|
||||
print(f" *** Encountered allocation non-contiguous")
|
||||
print(
|
||||
f" infer_state.cache_manager.past_key_values_length: {infer_state.cache_manager.past_key_values_length}"
|
||||
)
|
||||
infer_state.decode_is_contiguous = False
|
||||
alloc_mem = infer_state.cache_manager.alloc(batch_size)
|
||||
infer_state.decode_mem_index = alloc_mem
|
||||
# infer_state.decode_key_buffer = torch.empty((batch_size, self.tp_head_num_, self.head_dim_), dtype=torch.float16, device="cuda")
|
||||
# infer_state.decode_value_buffer = torch.empty((batch_size, self.tp_head_num_, self.head_dim_), dtype=torch.float16, device="cuda")
|
||||
infer_state.block_loc[:, seq_length_with_past - 1] = infer_state.decode_mem_index
|
||||
|
||||
# related to rotary embedding
|
||||
if infer_state.is_context_stage:
|
||||
infer_state.position_cos = torch.index_select(self._cos_cached, 0, position_ids.view(-1)).view(
|
||||
position_ids.view(-1).shape[0], -1
|
||||
)
|
||||
infer_state.position_sin = torch.index_select(self._sin_cached, 0, position_ids.view(-1)).view(
|
||||
position_ids.view(-1).shape[0], -1
|
||||
)
|
||||
else:
|
||||
seq_len = infer_state.seq_len
|
||||
infer_state.position_cos = torch.index_select(self._cos_cached, 0, seq_len - 1).view(seq_len.shape[0], -1)
|
||||
infer_state.position_sin = torch.index_select(self._sin_cached, 0, seq_len - 1).view(seq_len.shape[0], -1)
|
||||
infer_state.other_kv_index = infer_state.block_loc[0, infer_state.max_len_in_batch - 1].item()
|
||||
|
||||
transformer_outputs = self.transformer(
|
||||
input_ids=input_ids,
|
||||
position_ids=position_ids,
|
||||
attention_mask=attention_mask,
|
||||
past_key_values=past_key_values,
|
||||
inputs_embeds=inputs_embeds,
|
||||
use_cache=use_cache,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict,
|
||||
infer_state=infer_state,
|
||||
)
|
||||
|
||||
hidden_states = transformer_outputs[0]
|
||||
if return_last_logit:
|
||||
hidden_states = hidden_states[-1:]
|
||||
lm_logits = self.transformer.output_layer(hidden_states)
|
||||
lm_logits = lm_logits.transpose(0, 1).contiguous()
|
||||
|
||||
loss = None
|
||||
if labels is not None:
|
||||
lm_logits = lm_logits.to(torch.float32)
|
||||
|
||||
# Shift so that tokens < n predict n
|
||||
shift_logits = lm_logits[..., :-1, :].contiguous()
|
||||
shift_labels = labels[..., 1:].contiguous()
|
||||
# Flatten the tokens
|
||||
loss_fct = CrossEntropyLoss(ignore_index=-100)
|
||||
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
||||
|
||||
lm_logits = lm_logits.to(hidden_states.dtype)
|
||||
loss = loss.to(hidden_states.dtype)
|
||||
|
||||
if not return_dict:
|
||||
output = (lm_logits,) + transformer_outputs[1:]
|
||||
return ((loss,) + output) if loss is not None else output
|
||||
|
||||
return CausalLMOutputWithPast(
|
||||
loss=loss,
|
||||
logits=lm_logits,
|
||||
past_key_values=transformer_outputs.past_key_values,
|
||||
hidden_states=transformer_outputs.hidden_states,
|
||||
attentions=transformer_outputs.attentions,
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def chatglm_model_forward(
|
||||
self: ChatGLMModel,
|
||||
input_ids,
|
||||
position_ids: Optional[torch.Tensor] = None,
|
||||
attention_mask: Optional[torch.BoolTensor] = None,
|
||||
full_attention_mask: Optional[torch.BoolTensor] = None,
|
||||
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
||||
inputs_embeds: Optional[torch.Tensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
infer_state: BatchInferState = None,
|
||||
):
|
||||
output_hidden_states = (
|
||||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
)
|
||||
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
batch_size, seq_length = input_ids.shape
|
||||
|
||||
if inputs_embeds is None:
|
||||
inputs_embeds = self.embedding(input_ids)
|
||||
|
||||
if self.pre_seq_len is not None:
|
||||
if past_key_values is None:
|
||||
past_key_values = self.get_prompt(
|
||||
batch_size=batch_size,
|
||||
device=input_ids.device,
|
||||
dtype=inputs_embeds.dtype,
|
||||
)
|
||||
if attention_mask is not None:
|
||||
attention_mask = torch.cat(
|
||||
[
|
||||
attention_mask.new_ones((batch_size, self.pre_seq_len)),
|
||||
attention_mask,
|
||||
],
|
||||
dim=-1,
|
||||
)
|
||||
if full_attention_mask is None:
|
||||
if (attention_mask is not None and not attention_mask.all()) or (past_key_values and seq_length != 1):
|
||||
full_attention_mask = get_masks(
|
||||
self, input_ids, infer_state.cache_manager.past_key_values_length, padding_mask=attention_mask
|
||||
)
|
||||
|
||||
# Run encoder.
|
||||
hidden_states, presents, all_hidden_states, all_self_attentions = self.encoder(
|
||||
inputs_embeds,
|
||||
full_attention_mask,
|
||||
kv_caches=past_key_values,
|
||||
use_cache=use_cache,
|
||||
output_hidden_states=output_hidden_states,
|
||||
infer_state=infer_state,
|
||||
)
|
||||
|
||||
# update indices
|
||||
# infer_state.block_loc[:, infer_state.max_len_in_batch-1] = infer_state.total_token_num + torch.arange(0, batch_size, dtype=torch.int32, device="cuda")
|
||||
infer_state.start_loc = infer_state.start_loc + torch.arange(0, batch_size, dtype=torch.int32, device="cuda")
|
||||
infer_state.seq_len += 1
|
||||
infer_state.max_len_in_batch += 1
|
||||
|
||||
if not return_dict:
|
||||
return tuple(
|
||||
v
|
||||
for v in [
|
||||
hidden_states,
|
||||
presents,
|
||||
all_hidden_states,
|
||||
all_self_attentions,
|
||||
]
|
||||
if v is not None
|
||||
)
|
||||
|
||||
return BaseModelOutputWithPast(
|
||||
last_hidden_state=hidden_states,
|
||||
past_key_values=presents,
|
||||
hidden_states=all_hidden_states,
|
||||
attentions=all_self_attentions,
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def chatglm_encoder_forward(
|
||||
self: GLMTransformer,
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
kv_caches=None,
|
||||
use_cache: Optional[bool] = True,
|
||||
output_hidden_states: Optional[bool] = False,
|
||||
infer_state: Optional[BatchInferState] = None,
|
||||
):
|
||||
hidden_states = hidden_states.transpose(0, 1).contiguous()
|
||||
if not kv_caches:
|
||||
kv_caches = [None for _ in range(self.num_layers)]
|
||||
presents = () if use_cache else None
|
||||
all_self_attentions = None
|
||||
all_hidden_states = () if output_hidden_states else None
|
||||
|
||||
infer_state.decode_layer_id = 0
|
||||
for index in range(self.num_layers):
|
||||
layer = self.layers[index]
|
||||
|
||||
layer_ret = layer(
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
kv_cache=kv_caches[index],
|
||||
use_cache=use_cache,
|
||||
infer_state=infer_state,
|
||||
)
|
||||
|
||||
infer_state.decode_layer_id += 1
|
||||
|
||||
hidden_states, kv_cache = layer_ret
|
||||
if use_cache:
|
||||
presents = presents + (kv_cache,)
|
||||
|
||||
if output_hidden_states:
|
||||
all_hidden_states = all_hidden_states + (hidden_states,)
|
||||
|
||||
# Final layer norm.
|
||||
hidden_states = hidden_states.transpose(0, 1).contiguous()
|
||||
|
||||
if self.post_layer_norm:
|
||||
hidden_states = self.final_layernorm(hidden_states)
|
||||
|
||||
return hidden_states, presents, all_hidden_states, all_self_attentions
|
||||
|
||||
@staticmethod
|
||||
def chatglm_glmblock_forward(
|
||||
self: GLMBlock,
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
kv_cache=None,
|
||||
use_cache=True,
|
||||
infer_state: Optional[BatchInferState] = None,
|
||||
):
|
||||
# hidden_states: [s, b, h]
|
||||
|
||||
# Layer norm at the beginning of the transformer layer.
|
||||
layernorm_output = self.input_layernorm(hidden_states)
|
||||
# Self attention.
|
||||
attention_output, kv_cache = self.self_attention(
|
||||
layernorm_output,
|
||||
attention_mask,
|
||||
kv_cache=kv_cache,
|
||||
use_cache=use_cache,
|
||||
infer_state=infer_state,
|
||||
)
|
||||
# Residual connection.
|
||||
if self.apply_residual_connection_post_layernorm:
|
||||
residual = layernorm_output
|
||||
else:
|
||||
residual = hidden_states
|
||||
layernorm_input = torch.nn.functional.dropout(attention_output, p=self.hidden_dropout, training=self.training)
|
||||
layernorm_input = residual + layernorm_input
|
||||
# Layer norm post the self attention.
|
||||
layernorm_output = self.post_attention_layernorm(layernorm_input)
|
||||
# MLP.
|
||||
mlp_output = self.mlp(layernorm_output)
|
||||
|
||||
# Second residual connection.
|
||||
if self.apply_residual_connection_post_layernorm:
|
||||
residual = layernorm_output
|
||||
else:
|
||||
residual = layernorm_input
|
||||
|
||||
output = torch.nn.functional.dropout(mlp_output, p=self.hidden_dropout, training=self.training)
|
||||
output = residual + output
|
||||
return output, kv_cache
|
||||
|
||||
@staticmethod
|
||||
def chatglm_flash_attn_kvcache_forward(
|
||||
self: SelfAttention,
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
kv_cache=None,
|
||||
use_cache=True,
|
||||
infer_state: Optional[BatchInferState] = None,
|
||||
):
|
||||
assert use_cache is True, "use_cache should be set to True using this chatglm attention"
|
||||
# hidden_states: original :[sq, b, h] --> this [b, sq, h]
|
||||
batch_size = hidden_states.shape[0]
|
||||
hidden_size = hidden_states.shape[-1]
|
||||
# Attention heads [sq, b, h] --> [sq, b, (np * 3 * hn)]
|
||||
mixed_x_layer = self.query_key_value(hidden_states)
|
||||
if self.multi_query_attention:
|
||||
(query_layer, key_layer, value_layer) = mixed_x_layer.split(
|
||||
[
|
||||
self.num_attention_heads_per_partition * self.hidden_size_per_attention_head,
|
||||
self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head,
|
||||
self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head,
|
||||
],
|
||||
dim=-1,
|
||||
)
|
||||
query_layer = query_layer.view(
|
||||
query_layer.size()[:-1]
|
||||
+ (
|
||||
self.num_attention_heads_per_partition,
|
||||
self.hidden_size_per_attention_head,
|
||||
)
|
||||
)
|
||||
key_layer = key_layer.view(
|
||||
key_layer.size()[:-1]
|
||||
+ (
|
||||
self.num_multi_query_groups_per_partition,
|
||||
self.hidden_size_per_attention_head,
|
||||
)
|
||||
)
|
||||
value_layer = value_layer.view(
|
||||
value_layer.size()[:-1]
|
||||
+ (
|
||||
self.num_multi_query_groups_per_partition,
|
||||
self.hidden_size_per_attention_head,
|
||||
)
|
||||
)
|
||||
|
||||
else:
|
||||
new_tensor_shape = mixed_x_layer.size()[:-1] + (
|
||||
self.num_attention_heads_per_partition,
|
||||
3 * self.hidden_size_per_attention_head,
|
||||
)
|
||||
mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)
|
||||
# [sq, b, np, 3 * hn] --> 3 [sq, b, np, hn]
|
||||
(query_layer, key_layer, value_layer) = split_tensor_along_last_dim(mixed_x_layer, 3)
|
||||
cos, sin = infer_state.position_cos, infer_state.position_sin
|
||||
|
||||
chatglm2_rotary_emb_fwd(
|
||||
query_layer.view(-1, self.num_attention_heads_per_partition, self.hidden_size_per_attention_head), cos, sin
|
||||
)
|
||||
if self.multi_query_attention:
|
||||
chatglm2_rotary_emb_fwd(
|
||||
key_layer.view(-1, self.num_multi_query_groups_per_partition, self.hidden_size_per_attention_head),
|
||||
cos,
|
||||
sin,
|
||||
)
|
||||
else:
|
||||
chatglm2_rotary_emb_fwd(
|
||||
key_layer.view(-1, self.num_attention_heads_per_partition, self.hidden_size_per_attention_head),
|
||||
cos,
|
||||
sin,
|
||||
)
|
||||
|
||||
# reshape q k v to [bsz*sql, num_heads, head_dim] 2*1 ,32/2 ,128
|
||||
query_layer = query_layer.reshape(
|
||||
-1, self.num_attention_heads_per_partition, self.hidden_size_per_attention_head
|
||||
)
|
||||
key_layer = key_layer.reshape(
|
||||
-1, self.num_multi_query_groups_per_partition, self.hidden_size_per_attention_head
|
||||
)
|
||||
value_layer = value_layer.reshape(
|
||||
-1, self.num_multi_query_groups_per_partition, self.hidden_size_per_attention_head
|
||||
)
|
||||
|
||||
if infer_state.is_context_stage:
|
||||
# first token generation:
|
||||
# copy key and value calculated in current step to memory manager
|
||||
copy_kv_to_mem_cache(
|
||||
infer_state.decode_layer_id,
|
||||
key_layer,
|
||||
value_layer,
|
||||
infer_state.context_mem_index,
|
||||
infer_state.cache_manager,
|
||||
)
|
||||
attn_output = torch.empty_like(query_layer.contiguous().view(-1, self.projection_size))
|
||||
|
||||
# NOTE: no bug in context attn fwd (del it )
|
||||
lightllm_llama2_context_attention_fwd(
|
||||
query_layer,
|
||||
key_layer,
|
||||
value_layer,
|
||||
attn_output.view(-1, self.num_attention_heads_per_partition, self.hidden_size_per_attention_head),
|
||||
infer_state.start_loc,
|
||||
infer_state.seq_len,
|
||||
infer_state.max_len_in_batch,
|
||||
)
|
||||
|
||||
else:
|
||||
if infer_state.decode_is_contiguous:
|
||||
# if decode is contiguous, then we copy to key cache and value cache in cache manager directly
|
||||
cache_k = infer_state.cache_manager.key_buffer[infer_state.decode_layer_id][
|
||||
infer_state.decode_mem_start : infer_state.decode_mem_end, :, :
|
||||
]
|
||||
cache_v = infer_state.cache_manager.value_buffer[infer_state.decode_layer_id][
|
||||
infer_state.decode_mem_start : infer_state.decode_mem_end, :, :
|
||||
]
|
||||
cache_k.copy_(key_layer)
|
||||
cache_v.copy_(value_layer)
|
||||
else:
|
||||
# if decode is not contiguous, use triton kernel to copy key and value cache
|
||||
# k, v shape: [batch_size, num_heads, head_dim/embed_size_per_head
|
||||
copy_kv_to_mem_cache(
|
||||
infer_state.decode_layer_id,
|
||||
key_layer,
|
||||
value_layer,
|
||||
infer_state.decode_mem_index,
|
||||
infer_state.cache_manager,
|
||||
)
|
||||
|
||||
# second token and follows
|
||||
attn_output = torch.empty_like(query_layer.contiguous().view(-1, self.projection_size))
|
||||
cache_k = infer_state.cache_manager.key_buffer[infer_state.decode_layer_id][
|
||||
: infer_state.decode_mem_end, :, :
|
||||
]
|
||||
cache_v = infer_state.cache_manager.value_buffer[infer_state.decode_layer_id][
|
||||
: infer_state.decode_mem_end, :, :
|
||||
]
|
||||
|
||||
# ==================================
|
||||
# core attention computation is replaced by triton kernel
|
||||
# ==================================
|
||||
Llama2TokenAttentionForwards.token_attn(
|
||||
query_layer,
|
||||
cache_k,
|
||||
cache_v,
|
||||
attn_output,
|
||||
infer_state.block_loc,
|
||||
infer_state.start_loc,
|
||||
infer_state.seq_len,
|
||||
infer_state.max_len_in_batch,
|
||||
infer_state.other_kv_index,
|
||||
)
|
||||
|
||||
# print('after attention',torch.isnan(attn_output).any())
|
||||
|
||||
# =================
|
||||
# Output:[b,sq, h]
|
||||
# =================
|
||||
output = self.dense(attn_output).reshape(batch_size, -1, hidden_size)
|
||||
|
||||
return output, kv_cache
|
407
colossalai/legacy/inference/tensor_parallel/modeling/llama.py
Normal file
407
colossalai/legacy/inference/tensor_parallel/modeling/llama.py
Normal file
@@ -0,0 +1,407 @@
|
||||
import math
|
||||
from typing import List, Optional, Tuple
|
||||
|
||||
import torch
|
||||
from transformers.modeling_outputs import BaseModelOutputWithPast
|
||||
from transformers.models.llama.modeling_llama import LlamaAttention, LlamaDecoderLayer, LlamaModel
|
||||
|
||||
from colossalai.inference.tensor_parallel.batch_infer_state import BatchInferState
|
||||
from colossalai.kernel.triton import llama_context_attn_fwd, token_attention_fwd
|
||||
from colossalai.kernel.triton.token_attention_kernel import Llama2TokenAttentionForwards
|
||||
from ._utils import copy_kv_to_mem_cache
|
||||
try:
|
||||
from lightllm.models.llama.triton_kernel.context_flashattention_nopad import (
|
||||
context_attention_fwd as lightllm_llama_context_attention_fwd,
|
||||
)
|
||||
from lightllm.models.llama.triton_kernel.rotary_emb import rotary_emb_fwd as llama_rotary_embedding_fwd
|
||||
|
||||
HAS_LIGHTLLM_KERNEL = True
|
||||
except:
|
||||
print("please install lightllm from source to run inference: https://github.com/ModelTC/lightllm")
|
||||
HAS_LIGHTLLM_KERNEL = False
|
||||
|
||||
try:
|
||||
from flash_attn import flash_attn_with_kvcache
|
||||
|
||||
HAS_FLASH_KERNEL = True
|
||||
except:
|
||||
HAS_FLASH_KERNEL = False
|
||||
print("please install flash attentiom from https://github.com/Dao-AILab/flash-attention")
|
||||
|
||||
|
||||
def rotate_half(x):
|
||||
"""Rotates half the hidden dims of the input."""
|
||||
x1 = x[..., : x.shape[-1] // 2]
|
||||
x2 = x[..., x.shape[-1] // 2 :]
|
||||
return torch.cat((-x2, x1), dim=-1)
|
||||
|
||||
|
||||
def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
|
||||
# The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
|
||||
cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
|
||||
sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
|
||||
cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
|
||||
sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
|
||||
|
||||
q_embed = (q * cos) + (rotate_half(q) * sin)
|
||||
k_embed = (k * cos) + (rotate_half(k) * sin)
|
||||
return q_embed, k_embed
|
||||
|
||||
|
||||
def llama_triton_context_attention(
|
||||
query_states, key_states, value_states, attn_output, infer_state, num_key_value_groups=1
|
||||
):
|
||||
# if num_key_value_groups == 1:
|
||||
if HAS_LIGHTLLM_KERNEL is False:
|
||||
llama_context_attn_fwd(
|
||||
query_states,
|
||||
key_states,
|
||||
value_states,
|
||||
attn_output,
|
||||
infer_state.start_loc,
|
||||
infer_state.seq_len,
|
||||
# infer_state.cache_manager.past_key_values_length,
|
||||
infer_state.max_len_in_batch,
|
||||
)
|
||||
else:
|
||||
lightllm_llama_context_attention_fwd(
|
||||
query_states,
|
||||
key_states,
|
||||
value_states,
|
||||
attn_output,
|
||||
infer_state.start_loc,
|
||||
infer_state.seq_len,
|
||||
# infer_state.cache_manager.past_key_values_length,
|
||||
infer_state.max_len_in_batch,
|
||||
)
|
||||
|
||||
|
||||
def llama_triton_token_attention(query_states, attn_output, infer_state, num_key_value_groups=1):
|
||||
assert HAS_LIGHTLLM_KERNEL is True, "You have to install lightllm kernel to run token attention for llama models"
|
||||
if num_key_value_groups == 1:
|
||||
token_attention_fwd(
|
||||
query_states,
|
||||
infer_state.cache_manager.key_buffer[infer_state.decode_layer_id],
|
||||
infer_state.cache_manager.value_buffer[infer_state.decode_layer_id],
|
||||
attn_output,
|
||||
infer_state.block_loc,
|
||||
infer_state.start_loc,
|
||||
infer_state.seq_len,
|
||||
# infer_state.cache_manager.past_key_values_length,
|
||||
infer_state.max_len_in_batch,
|
||||
)
|
||||
|
||||
else:
|
||||
Llama2TokenAttentionForwards.token_attn(
|
||||
query_states,
|
||||
infer_state.cache_manager.key_buffer[infer_state.decode_layer_id],
|
||||
infer_state.cache_manager.value_buffer[infer_state.decode_layer_id],
|
||||
attn_output,
|
||||
infer_state.block_loc,
|
||||
infer_state.start_loc,
|
||||
infer_state.seq_len,
|
||||
# infer_state.cache_manager.past_key_values_length,
|
||||
infer_state.max_len_in_batch,
|
||||
infer_state.other_kv_index,
|
||||
)
|
||||
|
||||
|
||||
class LlamaInferenceForwards:
|
||||
"""
|
||||
This class holds forwards for llama inference.
|
||||
We intend to replace the forward methods for LlamaModel, LlamaDecoderLayer, and LlamaAttention for LlamaForCausalLM.
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
def llama_model_forward(
|
||||
self: LlamaModel,
|
||||
input_ids: torch.LongTensor = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
):
|
||||
infer_state = self.infer_state
|
||||
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||||
# retrieve input_ids and inputs_embeds
|
||||
if input_ids is not None and inputs_embeds is not None:
|
||||
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
||||
elif input_ids is not None:
|
||||
batch_size, seq_length = input_ids.shape
|
||||
elif inputs_embeds is not None:
|
||||
batch_size, seq_length, _ = inputs_embeds.shape
|
||||
else:
|
||||
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
||||
|
||||
if infer_state.is_context_stage:
|
||||
past_key_values_length = 0
|
||||
else:
|
||||
past_key_values_length = infer_state.max_len_in_batch - 1
|
||||
|
||||
# NOTE: differentiate with prefill stage
|
||||
# block_loc require different value-assigning method for two different stage
|
||||
if use_cache and seq_length != 1:
|
||||
# NOTE assume prefill stage
|
||||
# allocate memory block
|
||||
infer_state.is_context_stage = True # set prefill stage, notify attention layer
|
||||
infer_state.context_mem_index = infer_state.cache_manager.alloc(infer_state.total_token_num)
|
||||
infer_state.init_block_loc(
|
||||
infer_state.block_loc, infer_state.seq_len, seq_length, infer_state.context_mem_index
|
||||
)
|
||||
else:
|
||||
infer_state.is_context_stage = False
|
||||
alloc_mem = infer_state.cache_manager.alloc_contiguous(batch_size)
|
||||
if alloc_mem is not None:
|
||||
infer_state.decode_is_contiguous = True
|
||||
infer_state.decode_mem_index = alloc_mem[0]
|
||||
infer_state.decode_mem_start = alloc_mem[1]
|
||||
infer_state.decode_mem_end = alloc_mem[2]
|
||||
infer_state.block_loc[:, infer_state.max_len_in_batch - 1] = infer_state.decode_mem_index
|
||||
else:
|
||||
print(f" *** Encountered allocation non-contiguous")
|
||||
print(f" infer_state.max_len_in_batch : {infer_state.max_len_in_batch}")
|
||||
infer_state.decode_is_contiguous = False
|
||||
alloc_mem = infer_state.cache_manager.alloc(batch_size)
|
||||
infer_state.decode_mem_index = alloc_mem
|
||||
# infer_state.decode_key_buffer = torch.empty((batch_size, self.tp_head_num_, self.head_dim_), dtype=torch.float16, device="cuda")
|
||||
# infer_state.decode_value_buffer = torch.empty((batch_size, self.tp_head_num_, self.head_dim_), dtype=torch.float16, device="cuda")
|
||||
infer_state.block_loc[:, infer_state.max_len_in_batch - 1] = infer_state.decode_mem_index
|
||||
|
||||
if position_ids is None:
|
||||
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
||||
position_ids = torch.arange(
|
||||
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
||||
)
|
||||
position_ids = position_ids.repeat(batch_size, 1)
|
||||
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
||||
else:
|
||||
position_ids = position_ids.view(-1, seq_length).long()
|
||||
|
||||
if infer_state.is_context_stage:
|
||||
infer_state.position_cos = torch.index_select(self._cos_cached, 0, position_ids.view(-1)).view(
|
||||
position_ids.view(-1).shape[0], -1
|
||||
)
|
||||
infer_state.position_sin = torch.index_select(self._sin_cached, 0, position_ids.view(-1)).view(
|
||||
position_ids.view(-1).shape[0], -1
|
||||
)
|
||||
|
||||
else:
|
||||
seq_len = infer_state.seq_len
|
||||
infer_state.position_cos = torch.index_select(self._cos_cached, 0, seq_len - 1).view(seq_len.shape[0], -1)
|
||||
infer_state.position_sin = torch.index_select(self._sin_cached, 0, seq_len - 1).view(seq_len.shape[0], -1)
|
||||
infer_state.other_kv_index = infer_state.block_loc[0, infer_state.max_len_in_batch - 1].item()
|
||||
|
||||
if inputs_embeds is None:
|
||||
inputs_embeds = self.embed_tokens(input_ids)
|
||||
|
||||
# embed positions
|
||||
if attention_mask is None:
|
||||
attention_mask = torch.ones(
|
||||
(batch_size, infer_state.max_len_in_batch), dtype=torch.bool, device=inputs_embeds.device
|
||||
)
|
||||
|
||||
attention_mask = self._prepare_decoder_attention_mask(
|
||||
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
||||
)
|
||||
|
||||
hidden_states = inputs_embeds
|
||||
|
||||
# decoder layers
|
||||
all_hidden_states = () if output_hidden_states else None
|
||||
all_self_attns = () if output_attentions else None
|
||||
next_decoder_cache = () if use_cache else None
|
||||
|
||||
infer_state.decode_layer_id = 0
|
||||
for idx, decoder_layer in enumerate(self.layers):
|
||||
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
||||
# NOTE: modify here for passing args to decoder layer
|
||||
layer_outputs = decoder_layer(
|
||||
hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
position_ids=position_ids,
|
||||
past_key_value=past_key_value,
|
||||
output_attentions=output_attentions,
|
||||
use_cache=use_cache,
|
||||
infer_state=infer_state,
|
||||
)
|
||||
infer_state.decode_layer_id += 1
|
||||
hidden_states = layer_outputs[0]
|
||||
|
||||
if use_cache:
|
||||
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
||||
|
||||
hidden_states = self.norm(hidden_states)
|
||||
next_cache = next_decoder_cache if use_cache else None
|
||||
|
||||
# update indices
|
||||
# infer_state.block_loc[:, infer_state.max_len_in_batch-1] = infer_state.total_token_num + torch.arange(0, batch_size, dtype=torch.int32, device="cuda")
|
||||
infer_state.start_loc += torch.arange(0, batch_size, dtype=torch.int32, device="cuda")
|
||||
infer_state.seq_len += 1
|
||||
infer_state.max_len_in_batch += 1
|
||||
|
||||
if not return_dict:
|
||||
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
||||
|
||||
return BaseModelOutputWithPast(
|
||||
last_hidden_state=hidden_states,
|
||||
past_key_values=next_cache,
|
||||
hidden_states=all_hidden_states,
|
||||
attentions=all_self_attns,
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def llama_decoder_layer_forward(
|
||||
self: LlamaDecoderLayer,
|
||||
hidden_states: torch.Tensor,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
||||
output_attentions: Optional[bool] = False,
|
||||
use_cache: Optional[bool] = False,
|
||||
infer_state: Optional[BatchInferState] = None,
|
||||
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
||||
residual = hidden_states
|
||||
|
||||
hidden_states = self.input_layernorm(hidden_states)
|
||||
# Self Attention
|
||||
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
||||
hidden_states=hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
position_ids=position_ids,
|
||||
past_key_value=past_key_value,
|
||||
output_attentions=output_attentions,
|
||||
use_cache=use_cache,
|
||||
infer_state=infer_state,
|
||||
)
|
||||
|
||||
hidden_states = residual + hidden_states
|
||||
|
||||
# Fully Connected
|
||||
residual = hidden_states
|
||||
hidden_states = self.post_attention_layernorm(hidden_states)
|
||||
hidden_states = self.mlp(hidden_states)
|
||||
hidden_states = residual + hidden_states
|
||||
|
||||
outputs = (hidden_states,)
|
||||
|
||||
if output_attentions:
|
||||
outputs += (self_attn_weights,)
|
||||
|
||||
if use_cache:
|
||||
outputs += (present_key_value,)
|
||||
|
||||
return outputs
|
||||
|
||||
@staticmethod
|
||||
def llama_flash_attn_kvcache_forward(
|
||||
self: LlamaAttention,
|
||||
hidden_states: torch.Tensor,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
||||
output_attentions: bool = False,
|
||||
use_cache: bool = False,
|
||||
infer_state: Optional[BatchInferState] = None,
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||||
assert use_cache is True, "use_cache should be set to True using this llama attention"
|
||||
|
||||
bsz, q_len, _ = hidden_states.size()
|
||||
|
||||
# NOTE might think about better way to handle transposed k and v
|
||||
# key_states [bs, seq_len, num_heads, head_dim/embed_size_per_head]
|
||||
# key_states_transposed [bs, num_heads, seq_len, head_dim/embed_size_per_head]
|
||||
|
||||
query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim)
|
||||
key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_key_value_heads, self.head_dim)
|
||||
value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_key_value_heads, self.head_dim)
|
||||
|
||||
# NOTE might want to revise
|
||||
# need some way to record the length of past key values cache
|
||||
# since we won't return past_key_value_cache right now
|
||||
|
||||
cos, sin = infer_state.position_cos, infer_state.position_sin
|
||||
|
||||
llama_rotary_embedding_fwd(query_states.view(-1, self.num_heads, self.head_dim), cos, sin)
|
||||
llama_rotary_embedding_fwd(key_states.view(-1, self.num_key_value_heads, self.head_dim), cos, sin)
|
||||
|
||||
query_states = query_states.reshape(-1, self.num_heads, self.head_dim)
|
||||
key_states = key_states.reshape(-1, self.num_key_value_heads, self.head_dim)
|
||||
value_states = value_states.reshape(-1, self.num_key_value_heads, self.head_dim)
|
||||
|
||||
if infer_state.is_context_stage:
|
||||
# first token generation
|
||||
# copy key and value calculated in current step to memory manager
|
||||
copy_kv_to_mem_cache(
|
||||
infer_state.decode_layer_id,
|
||||
key_states,
|
||||
value_states,
|
||||
infer_state.context_mem_index,
|
||||
infer_state.cache_manager,
|
||||
)
|
||||
attn_output = torch.empty_like(query_states)
|
||||
|
||||
llama_triton_context_attention(
|
||||
query_states,
|
||||
key_states,
|
||||
value_states,
|
||||
attn_output,
|
||||
infer_state,
|
||||
num_key_value_groups=self.num_key_value_groups,
|
||||
)
|
||||
else:
|
||||
if infer_state.decode_is_contiguous:
|
||||
# if decode is contiguous, then we copy to key cache and value cache in cache manager directly
|
||||
cache_k = infer_state.cache_manager.key_buffer[infer_state.decode_layer_id][
|
||||
infer_state.decode_mem_start : infer_state.decode_mem_end, :, :
|
||||
]
|
||||
cache_v = infer_state.cache_manager.value_buffer[infer_state.decode_layer_id][
|
||||
infer_state.decode_mem_start : infer_state.decode_mem_end, :, :
|
||||
]
|
||||
cache_k.copy_(key_states)
|
||||
cache_v.copy_(value_states)
|
||||
else:
|
||||
# if decode is not contiguous, use triton kernel to copy key and value cache
|
||||
# k, v shape: [batch_size, num_heads, head_dim/embed_size_per_head
|
||||
copy_kv_to_mem_cache(
|
||||
infer_state.decode_layer_id,
|
||||
key_states,
|
||||
value_states,
|
||||
infer_state.decode_mem_index,
|
||||
infer_state.cache_manager,
|
||||
)
|
||||
|
||||
if HAS_LIGHTLLM_KERNEL:
|
||||
attn_output = torch.empty_like(query_states)
|
||||
llama_triton_token_attention(
|
||||
query_states, attn_output, infer_state, num_key_value_groups=self.num_key_value_groups
|
||||
)
|
||||
else:
|
||||
self.num_heads // self.num_key_value_heads
|
||||
cache_k = infer_state.cache_manager.key_buffer[infer_state.decode_layer_id]
|
||||
cache_v = infer_state.cache_manager.value_buffer[infer_state.decode_layer_id]
|
||||
|
||||
query_states = query_states.view(bsz, -1, self.num_heads, self.head_dim)
|
||||
copy_cache_k = cache_k.view(bsz, -1, self.num_key_value_heads, self.head_dim)
|
||||
copy_cache_v = cache_v.view(bsz, -1, self.num_key_value_heads, self.head_dim)
|
||||
|
||||
attn_output = flash_attn_with_kvcache(
|
||||
q=query_states,
|
||||
k_cache=copy_cache_k,
|
||||
v_cache=copy_cache_v,
|
||||
softmax_scale=1 / math.sqrt(self.head_dim),
|
||||
causal=True,
|
||||
)
|
||||
|
||||
attn_output = attn_output.view(bsz, q_len, self.hidden_size)
|
||||
|
||||
attn_output = self.o_proj(attn_output)
|
||||
|
||||
# return past_key_value as None
|
||||
return attn_output, None, None
|
@@ -0,0 +1,5 @@
|
||||
from .bloom import BloomModelInferPolicy
|
||||
from .chatglm2 import ChatGLM2InferPolicy
|
||||
from .llama import LlamaModelInferPolicy
|
||||
|
||||
__all__ = ["BloomModelInferPolicy", "LlamaModelInferPolicy", "ChatGLM2InferPolicy"]
|
102
colossalai/legacy/inference/tensor_parallel/policies/bloom.py
Normal file
102
colossalai/legacy/inference/tensor_parallel/policies/bloom.py
Normal file
@@ -0,0 +1,102 @@
|
||||
from functools import partial
|
||||
|
||||
import torch
|
||||
from torch.nn import LayerNorm
|
||||
|
||||
import colossalai.shardformer.layer as col_nn
|
||||
from colossalai.shardformer.policies.base_policy import ModulePolicyDescription, SubModuleReplacementDescription
|
||||
from colossalai.shardformer.policies.bloom import BloomForCausalLMPolicy
|
||||
|
||||
from ..modeling.bloom import BloomInferenceForwards
|
||||
|
||||
try:
|
||||
from colossalai.kernel.triton import layer_norm
|
||||
|
||||
HAS_TRITON_NORM = True
|
||||
except:
|
||||
print("Some of our kernels require triton. You might want to install triton from https://github.com/openai/triton")
|
||||
HAS_TRITON_NORM = False
|
||||
|
||||
|
||||
def get_triton_layernorm_forward():
|
||||
if HAS_TRITON_NORM:
|
||||
|
||||
def _triton_layernorm_forward(self: LayerNorm, hidden_states: torch.Tensor):
|
||||
return layer_norm(hidden_states, self.weight.data, self.bias, self.eps)
|
||||
|
||||
return _triton_layernorm_forward
|
||||
else:
|
||||
return None
|
||||
|
||||
|
||||
class BloomModelInferPolicy(BloomForCausalLMPolicy):
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
|
||||
def module_policy(self):
|
||||
from transformers.models.bloom.modeling_bloom import BloomAttention, BloomBlock, BloomForCausalLM, BloomModel
|
||||
|
||||
policy = super().module_policy()
|
||||
|
||||
if self.shard_config.extra_kwargs.get("inference_gptq", False):
|
||||
from colossalai.inference.quant.gptq.cai_gptq import ColCaiQuantLinear, RowCaiQuantLinear
|
||||
|
||||
policy[BloomBlock] = ModulePolicyDescription(
|
||||
attribute_replacement={
|
||||
"self_attention.hidden_size": self.model.config.hidden_size
|
||||
// self.shard_config.tensor_parallel_size,
|
||||
"self_attention.split_size": self.model.config.hidden_size
|
||||
// self.shard_config.tensor_parallel_size,
|
||||
"self_attention.num_heads": self.model.config.n_head // self.shard_config.tensor_parallel_size,
|
||||
},
|
||||
sub_module_replacement=[
|
||||
SubModuleReplacementDescription(
|
||||
suffix="self_attention.query_key_value",
|
||||
target_module=ColCaiQuantLinear,
|
||||
kwargs={"split_num": 3},
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="self_attention.dense", target_module=RowCaiQuantLinear, kwargs={"split_num": 1}
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="self_attention.attention_dropout",
|
||||
target_module=col_nn.DropoutForParallelInput,
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="mlp.dense_h_to_4h", target_module=ColCaiQuantLinear, kwargs={"split_num": 1}
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="mlp.dense_4h_to_h", target_module=RowCaiQuantLinear, kwargs={"split_num": 1}
|
||||
),
|
||||
],
|
||||
)
|
||||
# NOTE set inference mode to shard config
|
||||
self.shard_config._infer()
|
||||
|
||||
method_replacement = {
|
||||
"forward": BloomInferenceForwards.bloom_for_causal_lm_forward,
|
||||
"prepare_inputs_for_generation": BloomInferenceForwards.bloom_for_causal_lm_prepare_inputs_for_generation,
|
||||
}
|
||||
self.append_or_create_method_replacement(
|
||||
description=method_replacement, policy=policy, target_key=BloomForCausalLM
|
||||
)
|
||||
|
||||
method_replacement = {"forward": BloomInferenceForwards.bloom_model_forward}
|
||||
self.append_or_create_method_replacement(description=method_replacement, policy=policy, target_key=BloomModel)
|
||||
|
||||
method_replacement = {"forward": BloomInferenceForwards.bloom_block_forward}
|
||||
self.append_or_create_method_replacement(description=method_replacement, policy=policy, target_key=BloomBlock)
|
||||
|
||||
method_replacement = {"forward": BloomInferenceForwards.bloom_attention_forward}
|
||||
self.append_or_create_method_replacement(
|
||||
description=method_replacement, policy=policy, target_key=BloomAttention
|
||||
)
|
||||
|
||||
if HAS_TRITON_NORM:
|
||||
infer_method = get_triton_layernorm_forward()
|
||||
method_replacement = {"forward": partial(infer_method)}
|
||||
self.append_or_create_method_replacement(
|
||||
description=method_replacement, policy=policy, target_key=LayerNorm
|
||||
)
|
||||
|
||||
return policy
|
@@ -0,0 +1,77 @@
|
||||
from functools import partial
|
||||
|
||||
from colossalai.shardformer.modeling.chatglm2_6b.modeling_chatglm import (
|
||||
ChatGLMForConditionalGeneration,
|
||||
ChatGLMModel,
|
||||
GLMBlock,
|
||||
GLMTransformer,
|
||||
SelfAttention,
|
||||
)
|
||||
|
||||
# import colossalai
|
||||
from colossalai.shardformer.policies.chatglm2 import ChatGLMModelPolicy
|
||||
|
||||
from ..modeling._utils import init_to_get_rotary
|
||||
from ..modeling.chatglm2 import ChatGLM2InferenceForwards
|
||||
|
||||
try:
|
||||
HAS_TRITON_RMSNORM = True
|
||||
except:
|
||||
print("you should install triton from https://github.com/openai/triton")
|
||||
HAS_TRITON_RMSNORM = False
|
||||
|
||||
|
||||
class ChatGLM2InferPolicy(ChatGLMModelPolicy):
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
|
||||
def module_policy(self):
|
||||
policy = super().module_policy()
|
||||
self.shard_config._infer()
|
||||
|
||||
model_infer_forward = ChatGLM2InferenceForwards.chatglm_model_forward
|
||||
method_replacement = {"forward": model_infer_forward}
|
||||
self.append_or_create_method_replacement(description=method_replacement, policy=policy, target_key=ChatGLMModel)
|
||||
|
||||
encoder_infer_forward = ChatGLM2InferenceForwards.chatglm_encoder_forward
|
||||
method_replacement = {"forward": encoder_infer_forward}
|
||||
self.append_or_create_method_replacement(
|
||||
description=method_replacement, policy=policy, target_key=GLMTransformer
|
||||
)
|
||||
|
||||
encoder_layer_infer_forward = ChatGLM2InferenceForwards.chatglm_glmblock_forward
|
||||
method_replacement = {"forward": encoder_layer_infer_forward}
|
||||
self.append_or_create_method_replacement(description=method_replacement, policy=policy, target_key=GLMBlock)
|
||||
|
||||
attn_infer_forward = ChatGLM2InferenceForwards.chatglm_flash_attn_kvcache_forward
|
||||
method_replacement = {"forward": attn_infer_forward}
|
||||
self.append_or_create_method_replacement(
|
||||
description=method_replacement, policy=policy, target_key=SelfAttention
|
||||
)
|
||||
if self.shard_config.enable_tensor_parallelism:
|
||||
policy[GLMBlock].attribute_replacement["self_attention.num_multi_query_groups_per_partition"] = (
|
||||
self.model.config.multi_query_group_num // self.shard_config.tensor_parallel_size
|
||||
)
|
||||
# for rmsnorm and others, we need to check the shape
|
||||
return policy
|
||||
|
||||
def postprocess(self):
|
||||
init_to_get_rotary(self.model)
|
||||
return self.model
|
||||
|
||||
|
||||
class ChatGLM2ForConditionalGenerationInferPolicy(ChatGLM2InferPolicy):
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
|
||||
def module_policy(self):
|
||||
policy = super().module_policy()
|
||||
model_infer_forward = ChatGLM2InferenceForwards.chatglm_for_conditional_generation_forward
|
||||
method_replacement = {"forward": partial(model_infer_forward)}
|
||||
self.append_or_create_method_replacement(
|
||||
description=method_replacement, policy=policy, target_key=ChatGLMForConditionalGeneration
|
||||
)
|
||||
return policy
|
||||
|
||||
def postprocess(self):
|
||||
return super().postprocess()
|
121
colossalai/legacy/inference/tensor_parallel/policies/llama.py
Normal file
121
colossalai/legacy/inference/tensor_parallel/policies/llama.py
Normal file
@@ -0,0 +1,121 @@
|
||||
from functools import partial
|
||||
|
||||
import torch
|
||||
from transformers.models.llama.modeling_llama import LlamaAttention, LlamaDecoderLayer, LlamaModel, LlamaRMSNorm
|
||||
|
||||
from colossalai.shardformer.policies.base_policy import ModulePolicyDescription, SubModuleReplacementDescription
|
||||
|
||||
# import colossalai
|
||||
from colossalai.shardformer.policies.llama import LlamaForCausalLMPolicy
|
||||
|
||||
from ..modeling._utils import init_to_get_rotary
|
||||
from ..modeling.llama import LlamaInferenceForwards
|
||||
|
||||
try:
|
||||
from lightllm.models.llama.triton_kernel.rmsnorm import rmsnorm_forward as lightllm_rmsnorm_forward
|
||||
|
||||
HAS_TRITON_RMSNORM = True
|
||||
except:
|
||||
print("you should install triton from https://github.com/openai/triton")
|
||||
HAS_TRITON_RMSNORM = False
|
||||
|
||||
|
||||
def get_triton_rmsnorm_forward():
|
||||
if HAS_TRITON_RMSNORM:
|
||||
|
||||
def _triton_rmsnorm_forward(self: LlamaRMSNorm, hidden_states: torch.Tensor):
|
||||
return lightllm_rmsnorm_forward(hidden_states, self.weight.data, self.variance_epsilon)
|
||||
|
||||
return _triton_rmsnorm_forward
|
||||
else:
|
||||
return None
|
||||
|
||||
|
||||
class LlamaModelInferPolicy(LlamaForCausalLMPolicy):
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
|
||||
def module_policy(self):
|
||||
policy = super().module_policy()
|
||||
|
||||
if self.shard_config.extra_kwargs.get("inference_gptq", False):
|
||||
from colossalai.inference.quant.gptq.cai_gptq import ColCaiQuantLinear, RowCaiQuantLinear
|
||||
|
||||
decoder_attribute_replacement = {
|
||||
"self_attn.hidden_size": self.model.config.hidden_size // self.shard_config.tensor_parallel_size,
|
||||
"self_attn.num_heads": self.model.config.num_attention_heads // self.shard_config.tensor_parallel_size,
|
||||
}
|
||||
policy[LlamaDecoderLayer] = ModulePolicyDescription(
|
||||
attribute_replacement=decoder_attribute_replacement,
|
||||
sub_module_replacement=[
|
||||
SubModuleReplacementDescription(
|
||||
suffix="self_attn.q_proj",
|
||||
target_module=ColCaiQuantLinear,
|
||||
kwargs={"split_num": 1},
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="self_attn.k_proj",
|
||||
target_module=ColCaiQuantLinear,
|
||||
kwargs={"split_num": 1},
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="self_attn.v_proj",
|
||||
target_module=ColCaiQuantLinear,
|
||||
kwargs={"split_num": 1},
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="self_attn.o_proj",
|
||||
target_module=RowCaiQuantLinear,
|
||||
kwargs={"split_num": 1},
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="mlp.gate_proj",
|
||||
target_module=ColCaiQuantLinear,
|
||||
kwargs={"split_num": 1},
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="mlp.up_proj",
|
||||
target_module=ColCaiQuantLinear,
|
||||
kwargs={"split_num": 1},
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="mlp.down_proj",
|
||||
target_module=RowCaiQuantLinear,
|
||||
kwargs={"split_num": 1},
|
||||
),
|
||||
],
|
||||
)
|
||||
|
||||
self.shard_config._infer()
|
||||
|
||||
infer_forward = LlamaInferenceForwards.llama_model_forward
|
||||
method_replacement = {"forward": partial(infer_forward)}
|
||||
self.append_or_create_method_replacement(description=method_replacement, policy=policy, target_key=LlamaModel)
|
||||
|
||||
infer_forward = LlamaInferenceForwards.llama_decoder_layer_forward
|
||||
method_replacement = {"forward": partial(infer_forward)}
|
||||
self.append_or_create_method_replacement(
|
||||
description=method_replacement, policy=policy, target_key=LlamaDecoderLayer
|
||||
)
|
||||
|
||||
infer_forward = LlamaInferenceForwards.llama_flash_attn_kvcache_forward
|
||||
method_replacement = {"forward": partial(infer_forward)}
|
||||
self.append_or_create_method_replacement(
|
||||
description=method_replacement, policy=policy, target_key=LlamaAttention
|
||||
)
|
||||
|
||||
infer_forward = None
|
||||
if HAS_TRITON_RMSNORM:
|
||||
infer_forward = get_triton_rmsnorm_forward()
|
||||
|
||||
if infer_forward is not None:
|
||||
method_replacement = {"forward": partial(infer_forward)}
|
||||
self.append_or_create_method_replacement(
|
||||
description=method_replacement, policy=policy, target_key=LlamaRMSNorm
|
||||
)
|
||||
|
||||
return policy
|
||||
|
||||
def postprocess(self):
|
||||
init_to_get_rotary(self.model.model)
|
||||
return self.model
|
Reference in New Issue
Block a user