ColossalAI/tests/kit/model_zoo/transformers/deepseek_v3.py
Hongxin Liu 9379cbd668
[release] update version (#6195)
* [release] update version

* fix test

* fix test
2025-02-20 11:36:18 +08:00

76 lines
2.3 KiB
Python

# modified from tests/kit/model_zoo/transformers/mistral.py
from types import MethodType
import torch
import transformers
from transformers import AutoConfig
# ===============================
# Register single-sentence Mixtral
# ===============================
def data_gen():
# Generated from following code snippet
#
# from transformers import AutoModelForCausalLM, AutoTokenizer
# tokenizer = AutoTokenizer.from_pretrained("mixtralai/Mixtral-7B-v0.1")
# input = 'My favourite condiment is vinegar' (last two words repeated to satisfy length requirement)
# tokenized_input = tokenizer([input], return_tensors="pt")
# input_ids = tokenized_input['input_ids']
# attention_mask = tokenized_input['attention_mask']
input_ids = torch.tensor([[1, 22, 55, 77, 532, 349, 43, 22]], dtype=torch.int64)
attention_mask = torch.tensor([[1, 1, 1, 1, 1, 1, 1, 1]], dtype=torch.int64)
return dict(input_ids=input_ids, attention_mask=attention_mask)
def data_gen_for_lm():
# LM data gen
# the `labels` of LM is the token of the output, cause no padding, use `input_ids` as `labels`
data = data_gen()
data["labels"] = data["input_ids"].clone()
return data
# define output transform function
output_transform_fn = lambda x: x
# define loss function
loss_fn = lambda x: x[0].mean()
loss_fn_for_lm = lambda x: x.loss
def init_deepseek():
config = AutoConfig.from_pretrained(
"deepseek-ai/DeepSeek-V3",
hidden_size=128,
intermediate_size=320,
kv_lora_rank=4,
moe_intermediate_size=32,
num_attention_heads=4,
num_experts_per_tok=4,
n_group=4,
num_hidden_layers=3,
num_key_value_heads=4,
first_k_dense_replace=1,
q_lora_rank=8,
torch_dtype="bfloat16",
n_routed_experts=16,
topk_group=2,
v_head_dim=32,
qk_nope_head_dim=32,
qk_rope_head_dim=32,
trust_remote_code=True,
vocab_size=2048,
)
if hasattr(config, "pad_token_id"):
config.pad_token_id = config.eos_token_id
model = transformers.AutoModelForCausalLM.from_config(config, trust_remote_code=True)
# enable grad for moe layers
for m in model.modules():
if m.__class__.__name__ == "DeepseekV3MoE":
m.moe_infer = MethodType(m.moe_infer.__wrapped__, m)
return model