docs: clean extra file + readme update
63
README.md
@ -48,65 +48,43 @@ DB-GPT is an experimental open-source project that uses localized GPT large mode
|
||||
- [introduction](#introduction)
|
||||
- [features](#features)
|
||||
- [contribution](#contribution)
|
||||
- [acknowledgement](#acknowledgement)
|
||||
- [roadmap](#roadmap)
|
||||
- [contract](#contact-information)
|
||||
|
||||
[DB-GPT Youtube Video](https://www.youtube.com/watch?v=f5_g0OObZBQ)
|
||||
|
||||
|
||||
## Demo
|
||||
|
||||
Run on an RTX 4090 GPU.
|
||||
|
||||
https://github.com/eosphoros-ai/DB-GPT/assets/13723926/55f31781-1d49-4757-b96e-7ef6d3dbcf80
|
||||
|
||||
<!-- <video id="video" controls="" preload="auto" poster="assets/exector_sql.png">
|
||||
<source id="mp4" src="https://github.com/csunny/DB-GPT/assets/17919400/654b5a49-5ea4-4c02-b5b2-72d089dcc1f0" type="video/mp4">
|
||||
</videos> -->
|
||||
|
||||
#### Chat with data, and figure charts.
|
||||
|
||||

|
||||
|
||||
<p align="left">
|
||||
<img src="./assets/dashboard.png" width="800px" />
|
||||
<img src="./assets/chat_excel/chat_excel_6.png" width="800px" />
|
||||
</p>
|
||||
|
||||
#### Text2SQL, generate SQL from chat
|
||||
<p align="left">
|
||||
<img src="./assets/chatdata.png" width="800px" />
|
||||
<img src="./assets/chat_dashboard/chat_dashboard_2.png" width="800px" />
|
||||
</p>
|
||||
|
||||
#### Knowledge space to manage docs.
|
||||
<p align="left">
|
||||
<img src="./assets/ks.png" width="800px" />
|
||||
</p>
|
||||
|
||||
#### Chat with knowledge, such as url, pdf, csv, word. etc
|
||||
<p align="left">
|
||||
<img src="./assets/chat_knowledge.png" width="800px" />
|
||||
</p>
|
||||
|
||||
## Features
|
||||
|
||||
Currently, we have released multiple key features, which are listed below to demonstrate our current capabilities:
|
||||
|
||||
- SQL language capabilities
|
||||
- SQL generation
|
||||
- SQL diagnosis
|
||||
- Private domain Q&A and data processing
|
||||
- Knowledge Management(We currently support many document formats: txt, pdf, md, html, doc, ppt, and url.)
|
||||
- Database knowledge Q&A
|
||||
- knowledge Embedding
|
||||
|
||||
- Knowledge Management(We currently support many document formats: txt, pdf, md, html, doc, ppt, and url.)
|
||||
- ChatDB
|
||||
- ChatExcel
|
||||
- ChatDashboard
|
||||
- Plugins
|
||||
- Support custom plugin execution tasks and natively support the Auto-GPT plugin, such as:
|
||||
- Automatic execution of SQL and retrieval of query results
|
||||
- Automatic crawling and learning of knowledge
|
||||
- Multi-Agents&Plugins
|
||||
- Unified vector storage/indexing of knowledge base
|
||||
- Support for unstructured data such as PDF, TXT, Markdown, CSV, DOC, PPT, and WebURL
|
||||
|
||||
- Multi LLMs Support, Supports multiple large language models, currently supporting
|
||||
- 🔥 Vicuna-v1.5(7b,13b)
|
||||
- 🔥 llama-2(7b,13b,70b)
|
||||
@ -118,9 +96,6 @@ Currently, we have released multiple key features, which are listed below to dem
|
||||
- Gorilla(7b,13b)
|
||||
- baichuan(7b,13b)
|
||||
|
||||
[](https://star-history.com/#csunny/DB-GPT)
|
||||
|
||||
|
||||
## Introduction
|
||||
DB-GPT creates a vast model operating system using [FastChat](https://github.com/lm-sys/FastChat) and offers a large language model powered by [Vicuna](https://huggingface.co/Tribbiani/vicuna-7b). In addition, we provide private domain knowledge base question-answering capability. Furthermore, we also provide support for additional plugins, and our design natively supports the Auto-GPT plugin.Our vision is to make it easier and more convenient to build applications around databases and llm.
|
||||
|
||||
@ -159,30 +134,6 @@ The core capabilities mainly consist of the following parts:
|
||||
### Language Switching
|
||||
In the .env configuration file, modify the LANGUAGE parameter to switch to different languages. The default is English (Chinese: zh, English: en, other languages to be added later).
|
||||
|
||||
## Usage Instructions
|
||||
|
||||
|
||||
If nltk-related errors occur during the use of the knowledge base, you need to install the nltk toolkit. For more details, please refer to: [nltk documents](https://www.nltk.org/data.html)
|
||||
Run the Python interpreter and type the commands:
|
||||
|
||||
```bash
|
||||
>>> import nltk
|
||||
>>> nltk.download()
|
||||
```
|
||||
|
||||
## Acknowledgement
|
||||
|
||||
This project is standing on the shoulders of giants and is not going to work without the open-source communities. Special thanks to the following projects for their excellent contribution to the AI industry:
|
||||
- [FastChat](https://github.com/lm-sys/FastChat) for providing chat services
|
||||
- [vicuna-13b](https://lmsys.org/blog/2023-03-30-vicuna/) as the base model
|
||||
- [langchain](https://langchain.readthedocs.io/) tool chain
|
||||
- [Auto-GPT](https://github.com/Significant-Gravitas/Auto-GPT) universal plugin template
|
||||
- [Hugging Face](https://huggingface.co/) for big model management
|
||||
- [Chroma](https://github.com/chroma-core/chroma) for vector storage
|
||||
- [Milvus](https://milvus.io/) for distributed vector storage
|
||||
- [ChatGLM](https://github.com/THUDM/ChatGLM-6B) as the base model
|
||||
- [llama_index](https://github.com/jerryjliu/llama_index) for enhancing database-related knowledge using [in-context learning](https://arxiv.org/abs/2301.00234) based on existing knowledge bases.
|
||||
|
||||
## Contribution
|
||||
|
||||
- Please run `black .` before submitting the code. contributing guidelines, [how to contribution](https://github.com/csunny/DB-GPT/blob/main/CONTRIBUTING.md)
|
||||
|
32
README.zh.md
@ -63,10 +63,19 @@ https://github.com/csunny/DB-GPT/assets/13723926/55f31781-1d49-4757-b96e-7ef6d3d
|
||||
|
||||
#### 根据自然语言对话生成分析图表
|
||||
|
||||

|
||||
|
||||
<p align="left">
|
||||
<img src="./assets/chat_excel/chat_excel_6.png" width="800px" />
|
||||
</p>
|
||||
|
||||
<p align="left">
|
||||
<img src="./assets/dashboard.png" width="800px" />
|
||||
</p>
|
||||
|
||||
<p align="left">
|
||||
<img src="./assets/chat_dashboard/chat_dashboard_2.png" width="800px" />
|
||||
</p>
|
||||
|
||||
#### 根据自然语言对话生成SQL
|
||||
<p align="left">
|
||||
@ -107,12 +116,8 @@ https://github.com/csunny/DB-GPT/assets/13723926/55f31781-1d49-4757-b96e-7ef6d3d
|
||||
- 数据库对话
|
||||
- Chat2Dashboard
|
||||
- 插件模型
|
||||
- 支持自定义插件执行任务,原生支持Auto-GPT插件。如:
|
||||
- SQL自动执行,获取查询结果
|
||||
- 自动爬取学习知识
|
||||
- 知识库统一向量存储/索引
|
||||
- 非结构化数据支持包括PDF、MarkDown、CSV、WebURL
|
||||
|
||||
- 多模型支持
|
||||
- 支持多种大语言模型, 当前已支持如下模型:
|
||||
- 🔥 Vicuna-v1.5(7b,13b)
|
||||
@ -125,8 +130,6 @@ https://github.com/csunny/DB-GPT/assets/13723926/55f31781-1d49-4757-b96e-7ef6d3d
|
||||
- Gorilla(7b,13b)
|
||||
- baichuan(7b,13b)
|
||||
|
||||
[](https://star-history.com/#csunny/DB-GPT)
|
||||
|
||||
## 架构方案
|
||||
DB-GPT基于 [FastChat](https://github.com/lm-sys/FastChat) 构建大模型运行环境,并提供 vicuna 作为基础的大语言模型。此外,我们通过LangChain提供私域知识库问答能力。同时我们支持插件模式, 在设计上原生支持Auto-GPT插件。我们的愿景是让围绕数据库和LLM构建应用程序更加简便和便捷。
|
||||
|
||||
@ -183,23 +186,8 @@ Run the Python interpreter and type the commands:
|
||||
>>> nltk.download()
|
||||
```
|
||||
|
||||
## 感谢
|
||||
|
||||
项目取得的成果,需要感谢技术社区,尤其以下项目。
|
||||
|
||||
- [FastChat](https://github.com/lm-sys/FastChat) 提供 chat 服务
|
||||
- [vicuna-13b](https://huggingface.co/Tribbiani/vicuna-13b) 作为基础模型
|
||||
- [langchain](https://github.com/hwchase17/langchain) 工具链
|
||||
- [Auto-GPT](https://github.com/Significant-Gravitas/Auto-GPT) 通用的插件模版
|
||||
- [Hugging Face](https://huggingface.co/) 大模型管理
|
||||
- [Chroma](https://github.com/chroma-core/chroma) 向量存储
|
||||
- [Milvus](https://milvus.io/) 分布式向量存储
|
||||
- [ChatGLM](https://github.com/THUDM/ChatGLM-6B) 基础模型
|
||||
- [llama-index](https://github.com/jerryjliu/llama_index) 基于现有知识库进行[In-Context Learning](https://arxiv.org/abs/2301.00234)来对其进行数据库相关知识的增强。
|
||||
|
||||
# 贡献
|
||||
|
||||
- 提交代码前请先执行 `black .`
|
||||
提交代码前请先执行 `black .`
|
||||
|
||||
这是一个用于数据库的复杂且创新的工具, 我们的项目也在紧急的开发当中, 会陆续发布一些新的feature。如在使用当中有任何具体问题, 优先在项目下提issue, 如有需要, 请联系如下微信,我会尽力提供帮助,同时也非常欢迎大家参与到项目建设中。
|
||||
|
||||
|
Before Width: | Height: | Size: 1.8 MiB |
Before Width: | Height: | Size: 3.5 MiB |
Before Width: | Height: | Size: 5.0 MiB |
Before Width: | Height: | Size: 1.7 MiB |
Before Width: | Height: | Size: 2.5 MiB |
Before Width: | Height: | Size: 146 KiB |
Before Width: | Height: | Size: 371 KiB |
Before Width: | Height: | Size: 2.1 MiB |