mirror of
https://github.com/csunny/DB-GPT.git
synced 2025-08-01 00:03:29 +00:00
refactor:knowledge api refactor
1.knowledge python file refactor 2.source embedding return vector_ids
This commit is contained in:
parent
b3c7764190
commit
161fe4b358
@ -8,7 +8,7 @@ CREATE TABLE `knowledge_space` (
|
||||
`gmt_modified` TIMESTAMP DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT 'update time',
|
||||
PRIMARY KEY (`id`),
|
||||
KEY `idx_name` (`name`) COMMENT 'index:idx_name'
|
||||
) ENGINE=InnoDB AUTO_INCREMENT=100001 DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci COMMENT='knowledge space table';
|
||||
) ENGINE=InnoDB AUTO_INCREMENT=100001 DEFAULT CHARSET=utf8mb4 COMMENT='knowledge space table';
|
||||
|
||||
CREATE TABLE `knowledge_document` (
|
||||
`id` int NOT NULL AUTO_INCREMENT COMMENT 'auto increment id',
|
||||
@ -25,7 +25,7 @@ CREATE TABLE `knowledge_document` (
|
||||
`gmt_modified` TIMESTAMP DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT 'update time',
|
||||
PRIMARY KEY (`id`),
|
||||
KEY `idx_doc_name` (`doc_name`) COMMENT 'index:idx_doc_name'
|
||||
) ENGINE=InnoDB AUTO_INCREMENT=100001 DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci COMMENT='knowledge document table';
|
||||
) ENGINE=InnoDB AUTO_INCREMENT=100001 DEFAULT CHARSET=utf8mb4 COMMENT='knowledge document table';
|
||||
|
||||
CREATE TABLE `document_chunk` (
|
||||
`id` int NOT NULL AUTO_INCREMENT COMMENT 'auto increment id',
|
||||
@ -38,4 +38,4 @@ CREATE TABLE `document_chunk` (
|
||||
`gmt_modified` timestamp NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT 'update time',
|
||||
PRIMARY KEY (`id`),
|
||||
KEY `idx_document_id` (`document_id`) COMMENT 'index:document_id'
|
||||
) ENGINE=InnoDB AUTO_INCREMENT=100001 DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci COMMENT='knowledge document chunk detail'
|
||||
) ENGINE=InnoDB AUTO_INCREMENT=100001 DEFAULT CHARSET=utf8mb4 COMMENT='knowledge document chunk detail'
|
@ -59,7 +59,7 @@ class SourceEmbedding(ABC):
|
||||
self.vector_client = VectorStoreConnector(
|
||||
CFG.VECTOR_STORE_TYPE, self.vector_store_config
|
||||
)
|
||||
self.vector_client.load_document(docs)
|
||||
return self.vector_client.load_document(docs)
|
||||
|
||||
@register
|
||||
def similar_search(self, doc, topk):
|
||||
|
@ -5,15 +5,15 @@ from pilot.configs.config import Config
|
||||
from pilot.configs.model_config import LLM_MODEL_CONFIG
|
||||
from pilot.embedding_engine.knowledge_embedding import KnowledgeEmbedding
|
||||
from pilot.logs import logger
|
||||
from pilot.server.knowledge.chunk_dao import (
|
||||
from pilot.server.knowledge.chunk_db import (
|
||||
DocumentChunkEntity,
|
||||
DocumentChunkDao,
|
||||
)
|
||||
from pilot.server.knowledge.document_dao import (
|
||||
from pilot.server.knowledge.document_db import (
|
||||
KnowledgeDocumentDao,
|
||||
KnowledgeDocumentEntity,
|
||||
)
|
||||
from pilot.server.knowledge.space_dao import (
|
||||
from pilot.server.knowledge.space_db import (
|
||||
KnowledgeSpaceDao,
|
||||
KnowledgeSpaceEntity,
|
||||
)
|
||||
@ -195,7 +195,8 @@ class KnowledgeService:
|
||||
vector_ids = client.knowledge_embedding_batch(chunk_docs)
|
||||
doc.status = SyncStatus.FINISHED.name
|
||||
doc.result = "document embedding success"
|
||||
doc.vector_ids = ",".join(vector_ids)
|
||||
if vector_ids is not None:
|
||||
doc.vector_ids = ",".join(vector_ids)
|
||||
logger.info(f"async document embedding, success:{doc.doc_name}")
|
||||
except Exception as e:
|
||||
doc.status = SyncStatus.FAILED.name
|
||||
|
Loading…
Reference in New Issue
Block a user