mirror of
https://github.com/csunny/DB-GPT.git
synced 2025-08-01 00:03:29 +00:00
doc:knowledge docs update
This commit is contained in:
parent
f85def5a52
commit
16d6ce8c89
@ -6,13 +6,14 @@ inheriting the SourceEmbedding
|
||||
|
||||
```
|
||||
class MarkdownEmbedding(SourceEmbedding):
|
||||
"""pdf embedding for read pdf document."""
|
||||
"""pdf embedding for read markdown document."""
|
||||
|
||||
def __init__(self, file_path, vector_store_config):
|
||||
"""Initialize with pdf path."""
|
||||
super().__init__(file_path, vector_store_config)
|
||||
def __init__(self, file_path, vector_store_config, text_splitter):
|
||||
"""Initialize with markdown path."""
|
||||
super().__init__(file_path, vector_store_config, text_splitter)
|
||||
self.file_path = file_path
|
||||
self.vector_store_config = vector_store_config
|
||||
self.text_splitter = text_splitter or Nore
|
||||
```
|
||||
implement read() and data_process()
|
||||
read() method allows you to read data and split data into chunk
|
||||
@ -22,12 +23,19 @@ read() method allows you to read data and split data into chunk
|
||||
def read(self):
|
||||
"""Load from markdown path."""
|
||||
loader = EncodeTextLoader(self.file_path)
|
||||
textsplitter = SpacyTextSplitter(
|
||||
pipeline="zh_core_web_sm",
|
||||
chunk_size=CFG.KNOWLEDGE_CHUNK_SIZE,
|
||||
chunk_overlap=100,
|
||||
)
|
||||
return loader.load_and_split(textsplitter)
|
||||
if self.text_splitter is None:
|
||||
try:
|
||||
self.text_splitter = SpacyTextSplitter(
|
||||
pipeline="zh_core_web_sm",
|
||||
chunk_size=100,
|
||||
chunk_overlap=100,
|
||||
)
|
||||
except Exception:
|
||||
self.text_splitter = RecursiveCharacterTextSplitter(
|
||||
chunk_size=100, chunk_overlap=50
|
||||
)
|
||||
|
||||
return loader.load_and_split(self.text_splitter)
|
||||
```
|
||||
|
||||
data_process() method allows you to pre processing your ways
|
||||
|
@ -7,11 +7,12 @@ inheriting the SourceEmbedding
|
||||
class PDFEmbedding(SourceEmbedding):
|
||||
"""pdf embedding for read pdf document."""
|
||||
|
||||
def __init__(self, file_path, vector_store_config):
|
||||
def __init__(self, file_path, vector_store_config, text_splitter):
|
||||
"""Initialize with pdf path."""
|
||||
super().__init__(file_path, vector_store_config)
|
||||
super().__init__(file_path, vector_store_config, text_splitter)
|
||||
self.file_path = file_path
|
||||
self.vector_store_config = vector_store_config
|
||||
self.text_splitter = text_splitter or Nore
|
||||
```
|
||||
|
||||
implement read() and data_process()
|
||||
@ -21,15 +22,19 @@ read() method allows you to read data and split data into chunk
|
||||
def read(self):
|
||||
"""Load from pdf path."""
|
||||
loader = PyPDFLoader(self.file_path)
|
||||
# textsplitter = CHNDocumentSplitter(
|
||||
# pdf=True, sentence_size=CFG.KNOWLEDGE_CHUNK_SIZE
|
||||
# )
|
||||
textsplitter = SpacyTextSplitter(
|
||||
pipeline="zh_core_web_sm",
|
||||
chunk_size=CFG.KNOWLEDGE_CHUNK_SIZE,
|
||||
chunk_overlap=100,
|
||||
)
|
||||
return loader.load_and_split(textsplitter)
|
||||
if self.text_splitter is None:
|
||||
try:
|
||||
self.text_splitter = SpacyTextSplitter(
|
||||
pipeline="zh_core_web_sm",
|
||||
chunk_size=100,
|
||||
chunk_overlap=100,
|
||||
)
|
||||
except Exception:
|
||||
self.text_splitter = RecursiveCharacterTextSplitter(
|
||||
chunk_size=100, chunk_overlap=50
|
||||
)
|
||||
|
||||
return loader.load_and_split(self.text_splitter)
|
||||
```
|
||||
data_process() method allows you to pre processing your ways
|
||||
```
|
||||
|
@ -7,11 +7,17 @@ inheriting the SourceEmbedding
|
||||
class PPTEmbedding(SourceEmbedding):
|
||||
"""ppt embedding for read ppt document."""
|
||||
|
||||
def __init__(self, file_path, vector_store_config):
|
||||
"""Initialize with pdf path."""
|
||||
super().__init__(file_path, vector_store_config)
|
||||
def __init__(
|
||||
self,
|
||||
file_path,
|
||||
vector_store_config,
|
||||
text_splitter: Optional[TextSplitter] = None,
|
||||
):
|
||||
"""Initialize ppt word path."""
|
||||
super().__init__(file_path, vector_store_config, text_splitter=None)
|
||||
self.file_path = file_path
|
||||
self.vector_store_config = vector_store_config
|
||||
self.text_splitter = text_splitter or None
|
||||
```
|
||||
|
||||
implement read() and data_process()
|
||||
@ -21,12 +27,19 @@ read() method allows you to read data and split data into chunk
|
||||
def read(self):
|
||||
"""Load from ppt path."""
|
||||
loader = UnstructuredPowerPointLoader(self.file_path)
|
||||
textsplitter = SpacyTextSplitter(
|
||||
pipeline="zh_core_web_sm",
|
||||
chunk_size=CFG.KNOWLEDGE_CHUNK_SIZE,
|
||||
chunk_overlap=200,
|
||||
)
|
||||
return loader.load_and_split(textsplitter)
|
||||
if self.text_splitter is None:
|
||||
try:
|
||||
self.text_splitter = SpacyTextSplitter(
|
||||
pipeline="zh_core_web_sm",
|
||||
chunk_size=100,
|
||||
chunk_overlap=100,
|
||||
)
|
||||
except Exception:
|
||||
self.text_splitter = RecursiveCharacterTextSplitter(
|
||||
chunk_size=100, chunk_overlap=50
|
||||
)
|
||||
|
||||
return loader.load_and_split(self.text_splitter)
|
||||
```
|
||||
data_process() method allows you to pre processing your ways
|
||||
```
|
||||
|
@ -7,11 +7,17 @@ inheriting the SourceEmbedding
|
||||
class URLEmbedding(SourceEmbedding):
|
||||
"""url embedding for read url document."""
|
||||
|
||||
def __init__(self, file_path, vector_store_config):
|
||||
"""Initialize with url path."""
|
||||
super().__init__(file_path, vector_store_config)
|
||||
def __init__(
|
||||
self,
|
||||
file_path,
|
||||
vector_store_config,
|
||||
text_splitter: Optional[TextSplitter] = None,
|
||||
):
|
||||
"""Initialize url word path."""
|
||||
super().__init__(file_path, vector_store_config, text_splitter=None)
|
||||
self.file_path = file_path
|
||||
self.vector_store_config = vector_store_config
|
||||
self.text_splitter = text_splitter or None
|
||||
```
|
||||
|
||||
implement read() and data_process()
|
||||
@ -21,15 +27,19 @@ read() method allows you to read data and split data into chunk
|
||||
def read(self):
|
||||
"""Load from url path."""
|
||||
loader = WebBaseLoader(web_path=self.file_path)
|
||||
if CFG.LANGUAGE == "en":
|
||||
text_splitter = CharacterTextSplitter(
|
||||
chunk_size=CFG.KNOWLEDGE_CHUNK_SIZE,
|
||||
chunk_overlap=20,
|
||||
length_function=len,
|
||||
)
|
||||
else:
|
||||
text_splitter = CHNDocumentSplitter(pdf=True, sentence_size=1000)
|
||||
return loader.load_and_split(text_splitter)
|
||||
if self.text_splitter is None:
|
||||
try:
|
||||
self.text_splitter = SpacyTextSplitter(
|
||||
pipeline="zh_core_web_sm",
|
||||
chunk_size=100,
|
||||
chunk_overlap=100,
|
||||
)
|
||||
except Exception:
|
||||
self.text_splitter = RecursiveCharacterTextSplitter(
|
||||
chunk_size=100, chunk_overlap=50
|
||||
)
|
||||
|
||||
return loader.load_and_split(self.text_splitter)
|
||||
```
|
||||
data_process() method allows you to pre processing your ways
|
||||
```
|
||||
|
@ -7,11 +7,12 @@ inheriting the SourceEmbedding
|
||||
class WordEmbedding(SourceEmbedding):
|
||||
"""word embedding for read word document."""
|
||||
|
||||
def __init__(self, file_path, vector_store_config):
|
||||
"""Initialize with word path."""
|
||||
super().__init__(file_path, vector_store_config)
|
||||
def __init__(self, file_path, vector_store_config, text_splitter):
|
||||
"""Initialize with pdf path."""
|
||||
super().__init__(file_path, vector_store_config, text_splitter)
|
||||
self.file_path = file_path
|
||||
self.vector_store_config = vector_store_config
|
||||
self.text_splitter = text_splitter or Nore
|
||||
```
|
||||
|
||||
implement read() and data_process()
|
||||
@ -21,10 +22,19 @@ read() method allows you to read data and split data into chunk
|
||||
def read(self):
|
||||
"""Load from word path."""
|
||||
loader = UnstructuredWordDocumentLoader(self.file_path)
|
||||
textsplitter = CHNDocumentSplitter(
|
||||
pdf=True, sentence_size=CFG.KNOWLEDGE_CHUNK_SIZE
|
||||
)
|
||||
return loader.load_and_split(textsplitter)
|
||||
if self.text_splitter is None:
|
||||
try:
|
||||
self.text_splitter = SpacyTextSplitter(
|
||||
pipeline="zh_core_web_sm",
|
||||
chunk_size=100,
|
||||
chunk_overlap=100,
|
||||
)
|
||||
except Exception:
|
||||
self.text_splitter = RecursiveCharacterTextSplitter(
|
||||
chunk_size=100, chunk_overlap=50
|
||||
)
|
||||
|
||||
return loader.load_and_split(self.text_splitter)
|
||||
```
|
||||
data_process() method allows you to pre processing your ways
|
||||
```
|
||||
|
@ -28,7 +28,7 @@ class Config(metaclass=Singleton):
|
||||
self.skip_reprompt = False
|
||||
self.temperature = float(os.getenv("TEMPERATURE", 0.7))
|
||||
|
||||
self.NUM_GPUS = int(os.getenv("NUM_GPUS",1))
|
||||
self.NUM_GPUS = int(os.getenv("NUM_GPUS", 1))
|
||||
|
||||
self.execute_local_commands = (
|
||||
os.getenv("EXECUTE_LOCAL_COMMANDS", "False") == "True"
|
||||
|
@ -8,6 +8,13 @@ from pilot.vector_store.connector import VectorStoreConnector
|
||||
|
||||
|
||||
class EmbeddingEngine:
|
||||
"""EmbeddingEngine provide a chain process include(read->text_split->data_process->index_store) for knowledge document embedding into vector store.
|
||||
1.knowledge_embedding:knowledge document source into vector store.(Chroma, Milvus, Weaviate)
|
||||
2.similar_search: similarity search from vector_store
|
||||
how to use reference:https://db-gpt.readthedocs.io/en/latest/modules/knowledge.html
|
||||
how to integrate:https://db-gpt.readthedocs.io/en/latest/modules/knowledge/pdf/pdf_embedding.html
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model_name,
|
||||
@ -24,14 +31,17 @@ class EmbeddingEngine:
|
||||
self.vector_store_config["embeddings"] = self.embeddings
|
||||
|
||||
def knowledge_embedding(self):
|
||||
"""source embedding is chain process.read->text_split->data_process->index_store"""
|
||||
self.knowledge_embedding_client = self.init_knowledge_embedding()
|
||||
self.knowledge_embedding_client.source_embedding()
|
||||
|
||||
def knowledge_embedding_batch(self, docs):
|
||||
"""Deprecation"""
|
||||
# docs = self.knowledge_embedding_client.read_batch()
|
||||
return self.knowledge_embedding_client.index_to_store(docs)
|
||||
|
||||
def read(self):
|
||||
"""Deprecation"""
|
||||
self.knowledge_embedding_client = self.init_knowledge_embedding()
|
||||
return self.knowledge_embedding_client.read_batch()
|
||||
|
||||
|
@ -73,6 +73,7 @@ class VicunaLLMAdapater(BaseLLMAdaper):
|
||||
)
|
||||
return model, tokenizer
|
||||
|
||||
|
||||
def auto_configure_device_map(num_gpus):
|
||||
"""handling multi gpu calls"""
|
||||
# transformer.word_embeddings occupying 1 floors
|
||||
@ -81,18 +82,18 @@ def auto_configure_device_map(num_gpus):
|
||||
# Allocate a total of 30 layers to number On gpus cards
|
||||
num_trans_layers = 28
|
||||
per_gpu_layers = 30 / num_gpus
|
||||
#Bugfix: call torch.embedding in Linux and the incoming weight and input are not on the same device, resulting in a RuntimeError
|
||||
#Under Windows, model. device will be set to transformer. word_ Embeddings. device
|
||||
#Under Linux, model. device will be set to lm_ Head.device
|
||||
#When calling chat or stream_ During chat, input_ IDS will be placed on model. device
|
||||
#If transformer. word_ If embeddings. device and model. device are different, it will cause a RuntimeError
|
||||
#Therefore, here we will transform. word_ Embeddings, transformer. final_ Layernorm, lm_ Put all the heads on the first card
|
||||
# Bugfix: call torch.embedding in Linux and the incoming weight and input are not on the same device, resulting in a RuntimeError
|
||||
# Under Windows, model. device will be set to transformer. word_ Embeddings. device
|
||||
# Under Linux, model. device will be set to lm_ Head.device
|
||||
# When calling chat or stream_ During chat, input_ IDS will be placed on model. device
|
||||
# If transformer. word_ If embeddings. device and model. device are different, it will cause a RuntimeError
|
||||
# Therefore, here we will transform. word_ Embeddings, transformer. final_ Layernorm, lm_ Put all the heads on the first card
|
||||
device_map = {
|
||||
'transformer.embedding.word_embeddings': 0,
|
||||
'transformer.encoder.final_layernorm': 0,
|
||||
'transformer.output_layer': 0,
|
||||
'transformer.rotary_pos_emb': 0,
|
||||
'lm_head': 0
|
||||
"transformer.embedding.word_embeddings": 0,
|
||||
"transformer.encoder.final_layernorm": 0,
|
||||
"transformer.output_layer": 0,
|
||||
"transformer.rotary_pos_emb": 0,
|
||||
"lm_head": 0,
|
||||
}
|
||||
|
||||
used = 2
|
||||
@ -102,7 +103,7 @@ def auto_configure_device_map(num_gpus):
|
||||
gpu_target += 1
|
||||
used = 0
|
||||
assert gpu_target < num_gpus
|
||||
device_map[f'transformer.encoder.layers.{i}'] = gpu_target
|
||||
device_map[f"transformer.encoder.layers.{i}"] = gpu_target
|
||||
used += 1
|
||||
|
||||
return device_map
|
||||
@ -114,7 +115,13 @@ class ChatGLMAdapater(BaseLLMAdaper):
|
||||
def match(self, model_path: str):
|
||||
return "chatglm" in model_path
|
||||
|
||||
def loader(self, model_path: str, from_pretrained_kwargs: dict, device_map=None, num_gpus=CFG.NUM_GPUS):
|
||||
def loader(
|
||||
self,
|
||||
model_path: str,
|
||||
from_pretrained_kwargs: dict,
|
||||
device_map=None,
|
||||
num_gpus=CFG.NUM_GPUS,
|
||||
):
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
|
||||
if DEVICE != "cuda":
|
||||
@ -125,10 +132,8 @@ class ChatGLMAdapater(BaseLLMAdaper):
|
||||
else:
|
||||
model = (
|
||||
AutoModel.from_pretrained(
|
||||
model_path, trust_remote_code=True,
|
||||
**from_pretrained_kwargs
|
||||
)
|
||||
.half()
|
||||
model_path, trust_remote_code=True, **from_pretrained_kwargs
|
||||
).half()
|
||||
# .cuda()
|
||||
)
|
||||
from accelerate import dispatch_model
|
||||
|
@ -6,7 +6,13 @@ connector = {"Chroma": ChromaStore, "Milvus": MilvusStore}
|
||||
|
||||
|
||||
class VectorStoreConnector:
|
||||
"""vector store connector, can connect different vector db provided load document api_v1 and similar search api_v1."""
|
||||
"""VectorStoreConnector, can connect different vector db provided load document api_v1 and similar search api_v1.
|
||||
1.load_document:knowledge document source into vector store.(Chroma, Milvus, Weaviate)
|
||||
2.similar_search: similarity search from vector_store
|
||||
how to use reference:https://db-gpt.readthedocs.io/en/latest/modules/vector.html
|
||||
how to integrate:https://db-gpt.readthedocs.io/en/latest/modules/vector/milvus/milvus.html
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, vector_store_type, ctx: {}) -> None:
|
||||
"""initialize vector store connector."""
|
||||
|
Loading…
Reference in New Issue
Block a user