doc:knowledge docs update

This commit is contained in:
aries_ckt 2023-07-12 14:28:40 +08:00
parent f85def5a52
commit 16d6ce8c89
9 changed files with 135 additions and 68 deletions

View File

@ -6,13 +6,14 @@ inheriting the SourceEmbedding
```
class MarkdownEmbedding(SourceEmbedding):
"""pdf embedding for read pdf document."""
"""pdf embedding for read markdown document."""
def __init__(self, file_path, vector_store_config):
"""Initialize with pdf path."""
super().__init__(file_path, vector_store_config)
def __init__(self, file_path, vector_store_config, text_splitter):
"""Initialize with markdown path."""
super().__init__(file_path, vector_store_config, text_splitter)
self.file_path = file_path
self.vector_store_config = vector_store_config
self.text_splitter = text_splitter or Nore
```
implement read() and data_process()
read() method allows you to read data and split data into chunk
@ -22,12 +23,19 @@ read() method allows you to read data and split data into chunk
def read(self):
"""Load from markdown path."""
loader = EncodeTextLoader(self.file_path)
textsplitter = SpacyTextSplitter(
pipeline="zh_core_web_sm",
chunk_size=CFG.KNOWLEDGE_CHUNK_SIZE,
chunk_overlap=100,
)
return loader.load_and_split(textsplitter)
if self.text_splitter is None:
try:
self.text_splitter = SpacyTextSplitter(
pipeline="zh_core_web_sm",
chunk_size=100,
chunk_overlap=100,
)
except Exception:
self.text_splitter = RecursiveCharacterTextSplitter(
chunk_size=100, chunk_overlap=50
)
return loader.load_and_split(self.text_splitter)
```
data_process() method allows you to pre processing your ways

View File

@ -7,11 +7,12 @@ inheriting the SourceEmbedding
class PDFEmbedding(SourceEmbedding):
"""pdf embedding for read pdf document."""
def __init__(self, file_path, vector_store_config):
def __init__(self, file_path, vector_store_config, text_splitter):
"""Initialize with pdf path."""
super().__init__(file_path, vector_store_config)
super().__init__(file_path, vector_store_config, text_splitter)
self.file_path = file_path
self.vector_store_config = vector_store_config
self.text_splitter = text_splitter or Nore
```
implement read() and data_process()
@ -21,15 +22,19 @@ read() method allows you to read data and split data into chunk
def read(self):
"""Load from pdf path."""
loader = PyPDFLoader(self.file_path)
# textsplitter = CHNDocumentSplitter(
# pdf=True, sentence_size=CFG.KNOWLEDGE_CHUNK_SIZE
# )
textsplitter = SpacyTextSplitter(
pipeline="zh_core_web_sm",
chunk_size=CFG.KNOWLEDGE_CHUNK_SIZE,
chunk_overlap=100,
)
return loader.load_and_split(textsplitter)
if self.text_splitter is None:
try:
self.text_splitter = SpacyTextSplitter(
pipeline="zh_core_web_sm",
chunk_size=100,
chunk_overlap=100,
)
except Exception:
self.text_splitter = RecursiveCharacterTextSplitter(
chunk_size=100, chunk_overlap=50
)
return loader.load_and_split(self.text_splitter)
```
data_process() method allows you to pre processing your ways
```

View File

@ -7,11 +7,17 @@ inheriting the SourceEmbedding
class PPTEmbedding(SourceEmbedding):
"""ppt embedding for read ppt document."""
def __init__(self, file_path, vector_store_config):
"""Initialize with pdf path."""
super().__init__(file_path, vector_store_config)
def __init__(
self,
file_path,
vector_store_config,
text_splitter: Optional[TextSplitter] = None,
):
"""Initialize ppt word path."""
super().__init__(file_path, vector_store_config, text_splitter=None)
self.file_path = file_path
self.vector_store_config = vector_store_config
self.text_splitter = text_splitter or None
```
implement read() and data_process()
@ -21,12 +27,19 @@ read() method allows you to read data and split data into chunk
def read(self):
"""Load from ppt path."""
loader = UnstructuredPowerPointLoader(self.file_path)
textsplitter = SpacyTextSplitter(
pipeline="zh_core_web_sm",
chunk_size=CFG.KNOWLEDGE_CHUNK_SIZE,
chunk_overlap=200,
)
return loader.load_and_split(textsplitter)
if self.text_splitter is None:
try:
self.text_splitter = SpacyTextSplitter(
pipeline="zh_core_web_sm",
chunk_size=100,
chunk_overlap=100,
)
except Exception:
self.text_splitter = RecursiveCharacterTextSplitter(
chunk_size=100, chunk_overlap=50
)
return loader.load_and_split(self.text_splitter)
```
data_process() method allows you to pre processing your ways
```

View File

@ -7,11 +7,17 @@ inheriting the SourceEmbedding
class URLEmbedding(SourceEmbedding):
"""url embedding for read url document."""
def __init__(self, file_path, vector_store_config):
"""Initialize with url path."""
super().__init__(file_path, vector_store_config)
def __init__(
self,
file_path,
vector_store_config,
text_splitter: Optional[TextSplitter] = None,
):
"""Initialize url word path."""
super().__init__(file_path, vector_store_config, text_splitter=None)
self.file_path = file_path
self.vector_store_config = vector_store_config
self.text_splitter = text_splitter or None
```
implement read() and data_process()
@ -21,15 +27,19 @@ read() method allows you to read data and split data into chunk
def read(self):
"""Load from url path."""
loader = WebBaseLoader(web_path=self.file_path)
if CFG.LANGUAGE == "en":
text_splitter = CharacterTextSplitter(
chunk_size=CFG.KNOWLEDGE_CHUNK_SIZE,
chunk_overlap=20,
length_function=len,
)
else:
text_splitter = CHNDocumentSplitter(pdf=True, sentence_size=1000)
return loader.load_and_split(text_splitter)
if self.text_splitter is None:
try:
self.text_splitter = SpacyTextSplitter(
pipeline="zh_core_web_sm",
chunk_size=100,
chunk_overlap=100,
)
except Exception:
self.text_splitter = RecursiveCharacterTextSplitter(
chunk_size=100, chunk_overlap=50
)
return loader.load_and_split(self.text_splitter)
```
data_process() method allows you to pre processing your ways
```

View File

@ -7,11 +7,12 @@ inheriting the SourceEmbedding
class WordEmbedding(SourceEmbedding):
"""word embedding for read word document."""
def __init__(self, file_path, vector_store_config):
"""Initialize with word path."""
super().__init__(file_path, vector_store_config)
def __init__(self, file_path, vector_store_config, text_splitter):
"""Initialize with pdf path."""
super().__init__(file_path, vector_store_config, text_splitter)
self.file_path = file_path
self.vector_store_config = vector_store_config
self.text_splitter = text_splitter or Nore
```
implement read() and data_process()
@ -21,10 +22,19 @@ read() method allows you to read data and split data into chunk
def read(self):
"""Load from word path."""
loader = UnstructuredWordDocumentLoader(self.file_path)
textsplitter = CHNDocumentSplitter(
pdf=True, sentence_size=CFG.KNOWLEDGE_CHUNK_SIZE
)
return loader.load_and_split(textsplitter)
if self.text_splitter is None:
try:
self.text_splitter = SpacyTextSplitter(
pipeline="zh_core_web_sm",
chunk_size=100,
chunk_overlap=100,
)
except Exception:
self.text_splitter = RecursiveCharacterTextSplitter(
chunk_size=100, chunk_overlap=50
)
return loader.load_and_split(self.text_splitter)
```
data_process() method allows you to pre processing your ways
```

View File

@ -28,7 +28,7 @@ class Config(metaclass=Singleton):
self.skip_reprompt = False
self.temperature = float(os.getenv("TEMPERATURE", 0.7))
self.NUM_GPUS = int(os.getenv("NUM_GPUS",1))
self.NUM_GPUS = int(os.getenv("NUM_GPUS", 1))
self.execute_local_commands = (
os.getenv("EXECUTE_LOCAL_COMMANDS", "False") == "True"

View File

@ -8,6 +8,13 @@ from pilot.vector_store.connector import VectorStoreConnector
class EmbeddingEngine:
"""EmbeddingEngine provide a chain process include(read->text_split->data_process->index_store) for knowledge document embedding into vector store.
1.knowledge_embedding:knowledge document source into vector store.(Chroma, Milvus, Weaviate)
2.similar_search: similarity search from vector_store
how to use reference:https://db-gpt.readthedocs.io/en/latest/modules/knowledge.html
how to integrate:https://db-gpt.readthedocs.io/en/latest/modules/knowledge/pdf/pdf_embedding.html
"""
def __init__(
self,
model_name,
@ -24,14 +31,17 @@ class EmbeddingEngine:
self.vector_store_config["embeddings"] = self.embeddings
def knowledge_embedding(self):
"""source embedding is chain process.read->text_split->data_process->index_store"""
self.knowledge_embedding_client = self.init_knowledge_embedding()
self.knowledge_embedding_client.source_embedding()
def knowledge_embedding_batch(self, docs):
"""Deprecation"""
# docs = self.knowledge_embedding_client.read_batch()
return self.knowledge_embedding_client.index_to_store(docs)
def read(self):
"""Deprecation"""
self.knowledge_embedding_client = self.init_knowledge_embedding()
return self.knowledge_embedding_client.read_batch()

View File

@ -73,6 +73,7 @@ class VicunaLLMAdapater(BaseLLMAdaper):
)
return model, tokenizer
def auto_configure_device_map(num_gpus):
"""handling multi gpu calls"""
# transformer.word_embeddings occupying 1 floors
@ -81,18 +82,18 @@ def auto_configure_device_map(num_gpus):
# Allocate a total of 30 layers to number On gpus cards
num_trans_layers = 28
per_gpu_layers = 30 / num_gpus
#Bugfix: call torch.embedding in Linux and the incoming weight and input are not on the same device, resulting in a RuntimeError
#Under Windows, model. device will be set to transformer. word_ Embeddings. device
#Under Linux, model. device will be set to lm_ Head.device
#When calling chat or stream_ During chat, input_ IDS will be placed on model. device
#If transformer. word_ If embeddings. device and model. device are different, it will cause a RuntimeError
#Therefore, here we will transform. word_ Embeddings, transformer. final_ Layernorm, lm_ Put all the heads on the first card
# Bugfix: call torch.embedding in Linux and the incoming weight and input are not on the same device, resulting in a RuntimeError
# Under Windows, model. device will be set to transformer. word_ Embeddings. device
# Under Linux, model. device will be set to lm_ Head.device
# When calling chat or stream_ During chat, input_ IDS will be placed on model. device
# If transformer. word_ If embeddings. device and model. device are different, it will cause a RuntimeError
# Therefore, here we will transform. word_ Embeddings, transformer. final_ Layernorm, lm_ Put all the heads on the first card
device_map = {
'transformer.embedding.word_embeddings': 0,
'transformer.encoder.final_layernorm': 0,
'transformer.output_layer': 0,
'transformer.rotary_pos_emb': 0,
'lm_head': 0
"transformer.embedding.word_embeddings": 0,
"transformer.encoder.final_layernorm": 0,
"transformer.output_layer": 0,
"transformer.rotary_pos_emb": 0,
"lm_head": 0,
}
used = 2
@ -102,7 +103,7 @@ def auto_configure_device_map(num_gpus):
gpu_target += 1
used = 0
assert gpu_target < num_gpus
device_map[f'transformer.encoder.layers.{i}'] = gpu_target
device_map[f"transformer.encoder.layers.{i}"] = gpu_target
used += 1
return device_map
@ -114,7 +115,13 @@ class ChatGLMAdapater(BaseLLMAdaper):
def match(self, model_path: str):
return "chatglm" in model_path
def loader(self, model_path: str, from_pretrained_kwargs: dict, device_map=None, num_gpus=CFG.NUM_GPUS):
def loader(
self,
model_path: str,
from_pretrained_kwargs: dict,
device_map=None,
num_gpus=CFG.NUM_GPUS,
):
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
if DEVICE != "cuda":
@ -125,10 +132,8 @@ class ChatGLMAdapater(BaseLLMAdaper):
else:
model = (
AutoModel.from_pretrained(
model_path, trust_remote_code=True,
**from_pretrained_kwargs
)
.half()
model_path, trust_remote_code=True, **from_pretrained_kwargs
).half()
# .cuda()
)
from accelerate import dispatch_model

View File

@ -6,7 +6,13 @@ connector = {"Chroma": ChromaStore, "Milvus": MilvusStore}
class VectorStoreConnector:
"""vector store connector, can connect different vector db provided load document api_v1 and similar search api_v1."""
"""VectorStoreConnector, can connect different vector db provided load document api_v1 and similar search api_v1.
1.load_document:knowledge document source into vector store.(Chroma, Milvus, Weaviate)
2.similar_search: similarity search from vector_store
how to use reference:https://db-gpt.readthedocs.io/en/latest/modules/vector.html
how to integrate:https://db-gpt.readthedocs.io/en/latest/modules/vector/milvus/milvus.html
"""
def __init__(self, vector_store_type, ctx: {}) -> None:
"""initialize vector store connector."""