doc:knowledge docs update

This commit is contained in:
aries_ckt
2023-07-12 14:28:40 +08:00
parent f85def5a52
commit 16d6ce8c89
9 changed files with 135 additions and 68 deletions

View File

@@ -6,13 +6,14 @@ inheriting the SourceEmbedding
```
class MarkdownEmbedding(SourceEmbedding):
"""pdf embedding for read pdf document."""
"""pdf embedding for read markdown document."""
def __init__(self, file_path, vector_store_config):
"""Initialize with pdf path."""
super().__init__(file_path, vector_store_config)
def __init__(self, file_path, vector_store_config, text_splitter):
"""Initialize with markdown path."""
super().__init__(file_path, vector_store_config, text_splitter)
self.file_path = file_path
self.vector_store_config = vector_store_config
self.text_splitter = text_splitter or Nore
```
implement read() and data_process()
read() method allows you to read data and split data into chunk
@@ -22,12 +23,19 @@ read() method allows you to read data and split data into chunk
def read(self):
"""Load from markdown path."""
loader = EncodeTextLoader(self.file_path)
textsplitter = SpacyTextSplitter(
pipeline="zh_core_web_sm",
chunk_size=CFG.KNOWLEDGE_CHUNK_SIZE,
chunk_overlap=100,
)
return loader.load_and_split(textsplitter)
if self.text_splitter is None:
try:
self.text_splitter = SpacyTextSplitter(
pipeline="zh_core_web_sm",
chunk_size=100,
chunk_overlap=100,
)
except Exception:
self.text_splitter = RecursiveCharacterTextSplitter(
chunk_size=100, chunk_overlap=50
)
return loader.load_and_split(self.text_splitter)
```
data_process() method allows you to pre processing your ways

View File

@@ -7,11 +7,12 @@ inheriting the SourceEmbedding
class PDFEmbedding(SourceEmbedding):
"""pdf embedding for read pdf document."""
def __init__(self, file_path, vector_store_config):
def __init__(self, file_path, vector_store_config, text_splitter):
"""Initialize with pdf path."""
super().__init__(file_path, vector_store_config)
super().__init__(file_path, vector_store_config, text_splitter)
self.file_path = file_path
self.vector_store_config = vector_store_config
self.text_splitter = text_splitter or Nore
```
implement read() and data_process()
@@ -21,15 +22,19 @@ read() method allows you to read data and split data into chunk
def read(self):
"""Load from pdf path."""
loader = PyPDFLoader(self.file_path)
# textsplitter = CHNDocumentSplitter(
# pdf=True, sentence_size=CFG.KNOWLEDGE_CHUNK_SIZE
# )
textsplitter = SpacyTextSplitter(
pipeline="zh_core_web_sm",
chunk_size=CFG.KNOWLEDGE_CHUNK_SIZE,
chunk_overlap=100,
)
return loader.load_and_split(textsplitter)
if self.text_splitter is None:
try:
self.text_splitter = SpacyTextSplitter(
pipeline="zh_core_web_sm",
chunk_size=100,
chunk_overlap=100,
)
except Exception:
self.text_splitter = RecursiveCharacterTextSplitter(
chunk_size=100, chunk_overlap=50
)
return loader.load_and_split(self.text_splitter)
```
data_process() method allows you to pre processing your ways
```

View File

@@ -7,11 +7,17 @@ inheriting the SourceEmbedding
class PPTEmbedding(SourceEmbedding):
"""ppt embedding for read ppt document."""
def __init__(self, file_path, vector_store_config):
"""Initialize with pdf path."""
super().__init__(file_path, vector_store_config)
def __init__(
self,
file_path,
vector_store_config,
text_splitter: Optional[TextSplitter] = None,
):
"""Initialize ppt word path."""
super().__init__(file_path, vector_store_config, text_splitter=None)
self.file_path = file_path
self.vector_store_config = vector_store_config
self.text_splitter = text_splitter or None
```
implement read() and data_process()
@@ -21,12 +27,19 @@ read() method allows you to read data and split data into chunk
def read(self):
"""Load from ppt path."""
loader = UnstructuredPowerPointLoader(self.file_path)
textsplitter = SpacyTextSplitter(
pipeline="zh_core_web_sm",
chunk_size=CFG.KNOWLEDGE_CHUNK_SIZE,
chunk_overlap=200,
)
return loader.load_and_split(textsplitter)
if self.text_splitter is None:
try:
self.text_splitter = SpacyTextSplitter(
pipeline="zh_core_web_sm",
chunk_size=100,
chunk_overlap=100,
)
except Exception:
self.text_splitter = RecursiveCharacterTextSplitter(
chunk_size=100, chunk_overlap=50
)
return loader.load_and_split(self.text_splitter)
```
data_process() method allows you to pre processing your ways
```

View File

@@ -7,11 +7,17 @@ inheriting the SourceEmbedding
class URLEmbedding(SourceEmbedding):
"""url embedding for read url document."""
def __init__(self, file_path, vector_store_config):
"""Initialize with url path."""
super().__init__(file_path, vector_store_config)
def __init__(
self,
file_path,
vector_store_config,
text_splitter: Optional[TextSplitter] = None,
):
"""Initialize url word path."""
super().__init__(file_path, vector_store_config, text_splitter=None)
self.file_path = file_path
self.vector_store_config = vector_store_config
self.text_splitter = text_splitter or None
```
implement read() and data_process()
@@ -21,15 +27,19 @@ read() method allows you to read data and split data into chunk
def read(self):
"""Load from url path."""
loader = WebBaseLoader(web_path=self.file_path)
if CFG.LANGUAGE == "en":
text_splitter = CharacterTextSplitter(
chunk_size=CFG.KNOWLEDGE_CHUNK_SIZE,
chunk_overlap=20,
length_function=len,
)
else:
text_splitter = CHNDocumentSplitter(pdf=True, sentence_size=1000)
return loader.load_and_split(text_splitter)
if self.text_splitter is None:
try:
self.text_splitter = SpacyTextSplitter(
pipeline="zh_core_web_sm",
chunk_size=100,
chunk_overlap=100,
)
except Exception:
self.text_splitter = RecursiveCharacterTextSplitter(
chunk_size=100, chunk_overlap=50
)
return loader.load_and_split(self.text_splitter)
```
data_process() method allows you to pre processing your ways
```

View File

@@ -7,11 +7,12 @@ inheriting the SourceEmbedding
class WordEmbedding(SourceEmbedding):
"""word embedding for read word document."""
def __init__(self, file_path, vector_store_config):
"""Initialize with word path."""
super().__init__(file_path, vector_store_config)
def __init__(self, file_path, vector_store_config, text_splitter):
"""Initialize with pdf path."""
super().__init__(file_path, vector_store_config, text_splitter)
self.file_path = file_path
self.vector_store_config = vector_store_config
self.text_splitter = text_splitter or Nore
```
implement read() and data_process()
@@ -21,10 +22,19 @@ read() method allows you to read data and split data into chunk
def read(self):
"""Load from word path."""
loader = UnstructuredWordDocumentLoader(self.file_path)
textsplitter = CHNDocumentSplitter(
pdf=True, sentence_size=CFG.KNOWLEDGE_CHUNK_SIZE
)
return loader.load_and_split(textsplitter)
if self.text_splitter is None:
try:
self.text_splitter = SpacyTextSplitter(
pipeline="zh_core_web_sm",
chunk_size=100,
chunk_overlap=100,
)
except Exception:
self.text_splitter = RecursiveCharacterTextSplitter(
chunk_size=100, chunk_overlap=50
)
return loader.load_and_split(self.text_splitter)
```
data_process() method allows you to pre processing your ways
```