mirror of
https://github.com/csunny/DB-GPT.git
synced 2025-09-08 04:23:35 +00:00
BIN
asserts/exeable.png
Normal file
BIN
asserts/exeable.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 277 KiB |
@@ -1,3 +1,2 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding:utf-8 -*-
|
||||
|
7
pilot/agent/agent.py
Normal file
7
pilot/agent/agent.py
Normal file
@@ -0,0 +1,7 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding:utf-8 -*-
|
||||
|
||||
|
||||
class Agent:
|
||||
"""Agent class for interacting with DB-GPT """
|
||||
pass
|
23
pilot/agent/agent_manager.py
Normal file
23
pilot/agent/agent_manager.py
Normal file
@@ -0,0 +1,23 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding:utf-8 -*-
|
||||
|
||||
from pilot.singleton import Singleton
|
||||
|
||||
class AgentManager(metaclass=Singleton):
|
||||
"""Agent manager for managing DB-GPT agents"""
|
||||
def __init__(self) -> None:
|
||||
|
||||
self.agents = {} #TODO need to define
|
||||
|
||||
def create_agent(self):
|
||||
pass
|
||||
|
||||
def message_agent(self):
|
||||
pass
|
||||
|
||||
def list_agents(self):
|
||||
pass
|
||||
|
||||
def delete_agent(self):
|
||||
pass
|
||||
|
2
pilot/chain/audio.py
Normal file
2
pilot/chain/audio.py
Normal file
@@ -0,0 +1,2 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding:utf-8 -*-
|
12
pilot/configs/config.py
Normal file
12
pilot/configs/config.py
Normal file
@@ -0,0 +1,12 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
from auto_gpt_plugin_template import AutoGPTPluginTemplate
|
||||
from pilot.singleton import Singleton
|
||||
|
||||
class Config(metaclass=Singleton):
|
||||
"""Configuration class to store the state of bools for different scripts access"""
|
||||
def __init__(self) -> None:
|
||||
"""Initialize the Config class"""
|
||||
pass
|
||||
|
@@ -11,6 +11,7 @@ PILOT_PATH = os.path.join(ROOT_PATH, "pilot")
|
||||
VECTORE_PATH = os.path.join(PILOT_PATH, "vector_store")
|
||||
LOGDIR = os.path.join(ROOT_PATH, "logs")
|
||||
DATASETS_DIR = os.path.join(PILOT_PATH, "datasets")
|
||||
DATA_DIR = os.path.join(PILOT_PATH, "data")
|
||||
|
||||
nltk.data.path = [os.path.join(PILOT_PATH, "nltk_data")] + nltk.data.path
|
||||
|
||||
|
8
pilot/connections/base.py
Normal file
8
pilot/connections/base.py
Normal file
@@ -0,0 +1,8 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding:utf-8 -*-
|
||||
|
||||
"""We need to design a base class. That other connector can Write with this"""
|
||||
|
||||
class BaseConnection:
|
||||
pass
|
||||
|
7
pilot/connections/clickhouse.py
Normal file
7
pilot/connections/clickhouse.py
Normal file
@@ -0,0 +1,7 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
|
||||
class ClickHouseConnector:
|
||||
"""ClickHouseConnector"""
|
||||
pass
|
7
pilot/connections/es.py
Normal file
7
pilot/connections/es.py
Normal file
@@ -0,0 +1,7 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
|
||||
class ElasticSearchConnector:
|
||||
"""ElasticSearchConnector"""
|
||||
pass
|
6
pilot/connections/mongo.py
Normal file
6
pilot/connections/mongo.py
Normal file
@@ -0,0 +1,6 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
class MongoConnector:
|
||||
"""MongoConnector is a class which connect to mongo and chat with LLM"""
|
||||
pass
|
@@ -4,7 +4,11 @@
|
||||
import pymysql
|
||||
|
||||
class MySQLOperator:
|
||||
"""Connect MySQL Database fetch MetaData For LLM Prompt """
|
||||
"""Connect MySQL Database fetch MetaData For LLM Prompt
|
||||
Args:
|
||||
|
||||
Usage:
|
||||
"""
|
||||
|
||||
default_db = ["information_schema", "performance_schema", "sys", "mysql"]
|
||||
def __init__(self, user, password, host="localhost", port=3306) -> None:
|
||||
@@ -26,6 +30,9 @@ class MySQLOperator:
|
||||
cursor.execute(_sql)
|
||||
results = cursor.fetchall()
|
||||
return results
|
||||
|
||||
def get_index(self, schema_name):
|
||||
pass
|
||||
|
||||
def get_db_list(self):
|
||||
with self.conn.cursor() as cursor:
|
||||
@@ -38,5 +45,7 @@ class MySQLOperator:
|
||||
dbs = [d["Database"] for d in results if d["Database"] not in self.default_db]
|
||||
return dbs
|
||||
|
||||
def get_meta(self, schema_name):
|
||||
pass
|
||||
|
||||
|
6
pilot/connections/oracle.py
Normal file
6
pilot/connections/oracle.py
Normal file
@@ -0,0 +1,6 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding:utf-8 -*-
|
||||
|
||||
class OracleConnector:
|
||||
"""OracleConnector"""
|
||||
pass
|
8
pilot/connections/postgres.py
Normal file
8
pilot/connections/postgres.py
Normal file
@@ -0,0 +1,8 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
|
||||
|
||||
class PostgresConnector:
|
||||
"""PostgresConnector is a class which Connector to chat with LLM"""
|
||||
pass
|
7
pilot/connections/redis.py
Normal file
7
pilot/connections/redis.py
Normal file
@@ -0,0 +1,7 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding:utf-8 -*-
|
||||
|
||||
|
||||
class RedisConnector:
|
||||
"""RedisConnector"""
|
||||
pass
|
@@ -89,7 +89,7 @@ class Conversation:
|
||||
|
||||
|
||||
def gen_sqlgen_conversation(dbname):
|
||||
from pilot.connections.mysql_conn import MySQLOperator
|
||||
from pilot.connections.mysql import MySQLOperator
|
||||
mo = MySQLOperator(
|
||||
**DB_SETTINGS
|
||||
)
|
||||
|
@@ -10,7 +10,12 @@ from transformers import (
|
||||
|
||||
from fastchat.serve.compression import compress_module
|
||||
|
||||
class ModerLoader:
|
||||
class ModelLoader:
|
||||
"""Model loader is a class for model load
|
||||
|
||||
Args: model_path
|
||||
|
||||
"""
|
||||
|
||||
kwargs = {}
|
||||
|
||||
|
180
pilot/pturning/lora/finetune.py
Normal file
180
pilot/pturning/lora/finetune.py
Normal file
@@ -0,0 +1,180 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
import os
|
||||
import json
|
||||
import transformers
|
||||
from transformers import LlamaTokenizer, LlamaForCausalLM
|
||||
|
||||
from typing import List
|
||||
from peft import (
|
||||
LoraConfig,
|
||||
get_peft_model,
|
||||
get_peft_model_state_dict,
|
||||
prepare_model_for_int8_training,
|
||||
)
|
||||
|
||||
import torch
|
||||
from datasets import load_dataset
|
||||
import pandas as pd
|
||||
|
||||
|
||||
from pilot.configs.model_config import DATA_DIR, LLM_MODEL, LLM_MODEL_CONFIG
|
||||
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
CUTOFF_LEN = 50
|
||||
|
||||
df = pd.read_csv(os.path.join(DATA_DIR, "BTC_Tweets_Updated.csv"))
|
||||
|
||||
def sentiment_score_to_name(score: float):
|
||||
if score > 0:
|
||||
return "Positive"
|
||||
elif score < 0:
|
||||
return "Negative"
|
||||
return "Neutral"
|
||||
|
||||
|
||||
dataset_data = [
|
||||
{
|
||||
"instruction": "Detect the sentiment of the tweet.",
|
||||
"input": row_dict["Tweet"],
|
||||
"output": sentiment_score_to_name(row_dict["New_Sentiment_State"])
|
||||
}
|
||||
for row_dict in df.to_dict(orient="records")
|
||||
]
|
||||
|
||||
with open(os.path.join(DATA_DIR, "alpaca-bitcoin-sentiment-dataset.json"), "w") as f:
|
||||
json.dump(dataset_data, f)
|
||||
|
||||
|
||||
data = load_dataset("json", data_files=os.path.join(DATA_DIR, "alpaca-bitcoin-sentiment-dataset.json"))
|
||||
print(data["train"])
|
||||
|
||||
BASE_MODEL = LLM_MODEL_CONFIG[LLM_MODEL]
|
||||
model = LlamaForCausalLM.from_pretrained(
|
||||
BASE_MODEL,
|
||||
torch_dtype=torch.float16,
|
||||
device_map="auto",
|
||||
offload_folder=os.path.join(DATA_DIR, "vicuna-lora")
|
||||
)
|
||||
|
||||
tokenizer = LlamaTokenizer.from_pretrained(BASE_MODEL)
|
||||
tokenizer.pad_token_id = (0)
|
||||
tokenizer.padding_side = "left"
|
||||
|
||||
def generate_prompt(data_point):
|
||||
return f"""Blow is an instruction that describes a task, paired with an input that provide future context.
|
||||
Write a response that appropriately completes the request. #noqa:
|
||||
|
||||
### Instruct:
|
||||
{data_point["instruction"]}
|
||||
### Input
|
||||
{data_point["input"]}
|
||||
### Response
|
||||
{data_point["output"]}
|
||||
"""
|
||||
|
||||
def tokenize(prompt, add_eos_token=True):
|
||||
result = tokenizer(
|
||||
prompt,
|
||||
truncation=True,
|
||||
max_length=CUTOFF_LEN,
|
||||
padding=False,
|
||||
return_tensors=None,
|
||||
)
|
||||
|
||||
if (result["input_ids"][-1] != tokenizer.eos_token_id and len(result["input_ids"]) < CUTOFF_LEN and add_eos_token):
|
||||
result["input_ids"].append(tokenizer.eos_token_id)
|
||||
result["attention_mask"].append(1)
|
||||
|
||||
result["labels"] = result["input_ids"].copy()
|
||||
return result
|
||||
|
||||
def generate_and_tokenize_prompt(data_point):
|
||||
full_prompt = generate_prompt(data_point)
|
||||
tokenized_full_prompt = tokenize(full_prompt)
|
||||
return tokenized_full_prompt
|
||||
|
||||
|
||||
train_val = data["train"].train_test_split(
|
||||
test_size=200, shuffle=True, seed=42
|
||||
)
|
||||
|
||||
train_data = (
|
||||
train_val["train"].map(generate_and_tokenize_prompt)
|
||||
)
|
||||
|
||||
val_data = (
|
||||
train_val["test"].map(generate_and_tokenize_prompt)
|
||||
)
|
||||
|
||||
# Training
|
||||
LORA_R = 8
|
||||
LORA_ALPHA = 16
|
||||
LORA_DROPOUT = 0.05
|
||||
LORA_TARGET_MODULES = [
|
||||
"q_proj",
|
||||
"v_proj",
|
||||
]
|
||||
|
||||
BATCH_SIZE = 128
|
||||
MICRO_BATCH_SIZE = 4
|
||||
GRADIENT_ACCUMULATION_STEPS = BATCH_SIZE // MICRO_BATCH_SIZE
|
||||
LEARNING_RATE = 3e-4
|
||||
TRAIN_STEPS = 300
|
||||
OUTPUT_DIR = "experiments"
|
||||
|
||||
# We can now prepare model for training
|
||||
model = prepare_model_for_int8_training(model)
|
||||
config = LoraConfig(
|
||||
r = LORA_R,
|
||||
lora_alpha=LORA_ALPHA,
|
||||
target_modules=LORA_TARGET_MODULES,
|
||||
lora_dropout=LORA_DROPOUT,
|
||||
bias="none",
|
||||
task_type="CAUSAL_LM",
|
||||
)
|
||||
|
||||
model = get_peft_model(model, config)
|
||||
model.print_trainable_parameters()
|
||||
|
||||
training_arguments = transformers.TrainingArguments(
|
||||
per_device_train_batch_size=MICRO_BATCH_SIZE,
|
||||
gradient_accumulation_steps=GRADIENT_ACCUMULATION_STEPS,
|
||||
warmup_steps=100,
|
||||
max_steps=TRAIN_STEPS,
|
||||
no_cuda=True,
|
||||
learning_rate=LEARNING_RATE,
|
||||
logging_steps=10,
|
||||
optim="adamw_torch",
|
||||
evaluation_strategy="steps",
|
||||
save_strategy="steps",
|
||||
eval_steps=50,
|
||||
save_steps=50,
|
||||
output_dir=OUTPUT_DIR,
|
||||
save_total_limit=3,
|
||||
load_best_model_at_end=True,
|
||||
report_to="tensorboard"
|
||||
)
|
||||
|
||||
data_collector = transformers.DataCollatorForSeq2Seq(
|
||||
tokenizer, pad_to_multiple_of=8, return_tensors="pt", padding=True
|
||||
)
|
||||
|
||||
trainer = transformers.Trainer(
|
||||
model=model,
|
||||
train_dataset=train_data,
|
||||
eval_dataset=val_data,
|
||||
args=training_arguments,
|
||||
data_collector=data_collector
|
||||
)
|
||||
|
||||
model.config.use_cache = False
|
||||
old_state_dict = model.state_dict
|
||||
model.state_dict = (
|
||||
lambda self, *_, **__: get_peft_model_state_dict(
|
||||
self, old_state_dict()
|
||||
)
|
||||
).__get__(model, type(model))
|
||||
|
||||
trainer.train()
|
||||
model.save_pretrained(OUTPUT_DIR)
|
@@ -13,7 +13,7 @@ from pilot.model.inference import generate_output, get_embeddings
|
||||
from fastchat.serve.inference import load_model
|
||||
|
||||
|
||||
from pilot.model.loader import ModerLoader
|
||||
from pilot.model.loader import ModelLoader
|
||||
from pilot.configs.model_config import *
|
||||
|
||||
model_path = LLM_MODEL_CONFIG[LLM_MODEL]
|
||||
@@ -22,7 +22,7 @@ model_path = LLM_MODEL_CONFIG[LLM_MODEL]
|
||||
global_counter = 0
|
||||
model_semaphore = None
|
||||
|
||||
ml = ModerLoader(model_path=model_path)
|
||||
ml = ModelLoader(model_path=model_path)
|
||||
model, tokenizer = ml.loader(num_gpus=1, load_8bit=ISLOAD_8BIT, debug=ISDEBUG)
|
||||
#model, tokenizer = load_model(model_path=model_path, device=DEVICE, num_gpus=1, load_8bit=True, debug=False)
|
||||
|
||||
|
@@ -12,7 +12,7 @@ import requests
|
||||
from urllib.parse import urljoin
|
||||
from pilot.configs.model_config import DB_SETTINGS
|
||||
from pilot.server.vectordb_qa import KnownLedgeBaseQA
|
||||
from pilot.connections.mysql_conn import MySQLOperator
|
||||
from pilot.connections.mysql import MySQLOperator
|
||||
from pilot.vector_store.extract_tovec import get_vector_storelist, load_knownledge_from_doc, knownledge_tovec_st
|
||||
|
||||
from pilot.configs.model_config import LOGDIR, VICUNA_MODEL_SERVER, LLM_MODEL, DATASETS_DIR
|
||||
|
21
pilot/singleton.py
Normal file
21
pilot/singleton.py
Normal file
@@ -0,0 +1,21 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
"""The singleton metaclass for ensuring only one instance of a class."""
|
||||
import abc
|
||||
from typing import Any
|
||||
|
||||
class Singleton(abc.ABCMeta, type):
|
||||
""" Singleton metaclass for ensuring only one instance of a class"""
|
||||
|
||||
_instances = {}
|
||||
def __call__(cls, *args: Any, **kwargs: Any) -> Any:
|
||||
"""Call method for the singleton metaclass"""
|
||||
if cls not in cls._instances:
|
||||
cls._instances[cls] = super(Singleton, cls).__call__(*args, **kwargs)
|
||||
return cls._instances[cls]
|
||||
|
||||
|
||||
class AbstractSingleton(abc.ABC, metaclass=Singleton):
|
||||
"""Abstract singleton class for ensuring only one instance of a class"""
|
||||
pass
|
@@ -15,6 +15,20 @@ from pilot.configs.model_config import VECTORE_PATH, DATASETS_DIR, LLM_MODEL_CON
|
||||
|
||||
class KnownLedge2Vector:
|
||||
|
||||
"""KnownLedge2Vector class is order to load document to vector
|
||||
and persist to vector store.
|
||||
|
||||
Args:
|
||||
- model_name
|
||||
|
||||
Usage:
|
||||
k2v = KnownLedge2Vector()
|
||||
persist_dir = os.path.join(VECTORE_PATH, ".vectordb")
|
||||
print(persist_dir)
|
||||
for s, dc in k2v.query("what is oceanbase?"):
|
||||
print(s, dc.page_content, dc.metadata)
|
||||
|
||||
"""
|
||||
embeddings: object = None
|
||||
model_name = LLM_MODEL_CONFIG["sentence-transforms"]
|
||||
top_k: int = VECTOR_SEARCH_TOP_K
|
||||
@@ -81,11 +95,4 @@ class KnownLedge2Vector:
|
||||
dc, s = doc
|
||||
yield s, dc
|
||||
|
||||
if __name__ == "__main__":
|
||||
k2v = KnownLedge2Vector()
|
||||
|
||||
persist_dir = os.path.join(VECTORE_PATH, ".vectordb")
|
||||
print(persist_dir)
|
||||
for s, dc in k2v.query("什么是OceanBase"):
|
||||
print(s, dc.page_content, dc.metadata)
|
||||
|
Reference in New Issue
Block a user