mirror of
https://github.com/csunny/DB-GPT.git
synced 2025-09-09 04:49:26 +00:00
BIN
asserts/exeable.png
Normal file
BIN
asserts/exeable.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 277 KiB |
@@ -1,3 +1,2 @@
|
|||||||
#!/usr/bin/env python3
|
#!/usr/bin/env python3
|
||||||
# -*- coding:utf-8 -*-
|
# -*- coding:utf-8 -*-
|
||||||
|
|
7
pilot/agent/agent.py
Normal file
7
pilot/agent/agent.py
Normal file
@@ -0,0 +1,7 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# -*- coding:utf-8 -*-
|
||||||
|
|
||||||
|
|
||||||
|
class Agent:
|
||||||
|
"""Agent class for interacting with DB-GPT """
|
||||||
|
pass
|
23
pilot/agent/agent_manager.py
Normal file
23
pilot/agent/agent_manager.py
Normal file
@@ -0,0 +1,23 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# -*- coding:utf-8 -*-
|
||||||
|
|
||||||
|
from pilot.singleton import Singleton
|
||||||
|
|
||||||
|
class AgentManager(metaclass=Singleton):
|
||||||
|
"""Agent manager for managing DB-GPT agents"""
|
||||||
|
def __init__(self) -> None:
|
||||||
|
|
||||||
|
self.agents = {} #TODO need to define
|
||||||
|
|
||||||
|
def create_agent(self):
|
||||||
|
pass
|
||||||
|
|
||||||
|
def message_agent(self):
|
||||||
|
pass
|
||||||
|
|
||||||
|
def list_agents(self):
|
||||||
|
pass
|
||||||
|
|
||||||
|
def delete_agent(self):
|
||||||
|
pass
|
||||||
|
|
2
pilot/chain/audio.py
Normal file
2
pilot/chain/audio.py
Normal file
@@ -0,0 +1,2 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# -*- coding:utf-8 -*-
|
12
pilot/configs/config.py
Normal file
12
pilot/configs/config.py
Normal file
@@ -0,0 +1,12 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# -*- coding: utf-8 -*-
|
||||||
|
|
||||||
|
from auto_gpt_plugin_template import AutoGPTPluginTemplate
|
||||||
|
from pilot.singleton import Singleton
|
||||||
|
|
||||||
|
class Config(metaclass=Singleton):
|
||||||
|
"""Configuration class to store the state of bools for different scripts access"""
|
||||||
|
def __init__(self) -> None:
|
||||||
|
"""Initialize the Config class"""
|
||||||
|
pass
|
||||||
|
|
@@ -11,6 +11,7 @@ PILOT_PATH = os.path.join(ROOT_PATH, "pilot")
|
|||||||
VECTORE_PATH = os.path.join(PILOT_PATH, "vector_store")
|
VECTORE_PATH = os.path.join(PILOT_PATH, "vector_store")
|
||||||
LOGDIR = os.path.join(ROOT_PATH, "logs")
|
LOGDIR = os.path.join(ROOT_PATH, "logs")
|
||||||
DATASETS_DIR = os.path.join(PILOT_PATH, "datasets")
|
DATASETS_DIR = os.path.join(PILOT_PATH, "datasets")
|
||||||
|
DATA_DIR = os.path.join(PILOT_PATH, "data")
|
||||||
|
|
||||||
nltk.data.path = [os.path.join(PILOT_PATH, "nltk_data")] + nltk.data.path
|
nltk.data.path = [os.path.join(PILOT_PATH, "nltk_data")] + nltk.data.path
|
||||||
|
|
||||||
|
8
pilot/connections/base.py
Normal file
8
pilot/connections/base.py
Normal file
@@ -0,0 +1,8 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# -*- coding:utf-8 -*-
|
||||||
|
|
||||||
|
"""We need to design a base class. That other connector can Write with this"""
|
||||||
|
|
||||||
|
class BaseConnection:
|
||||||
|
pass
|
||||||
|
|
7
pilot/connections/clickhouse.py
Normal file
7
pilot/connections/clickhouse.py
Normal file
@@ -0,0 +1,7 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# -*- coding: utf-8 -*-
|
||||||
|
|
||||||
|
|
||||||
|
class ClickHouseConnector:
|
||||||
|
"""ClickHouseConnector"""
|
||||||
|
pass
|
7
pilot/connections/es.py
Normal file
7
pilot/connections/es.py
Normal file
@@ -0,0 +1,7 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# -*- coding: utf-8 -*-
|
||||||
|
|
||||||
|
|
||||||
|
class ElasticSearchConnector:
|
||||||
|
"""ElasticSearchConnector"""
|
||||||
|
pass
|
6
pilot/connections/mongo.py
Normal file
6
pilot/connections/mongo.py
Normal file
@@ -0,0 +1,6 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# -*- coding: utf-8 -*-
|
||||||
|
|
||||||
|
class MongoConnector:
|
||||||
|
"""MongoConnector is a class which connect to mongo and chat with LLM"""
|
||||||
|
pass
|
@@ -4,7 +4,11 @@
|
|||||||
import pymysql
|
import pymysql
|
||||||
|
|
||||||
class MySQLOperator:
|
class MySQLOperator:
|
||||||
"""Connect MySQL Database fetch MetaData For LLM Prompt """
|
"""Connect MySQL Database fetch MetaData For LLM Prompt
|
||||||
|
Args:
|
||||||
|
|
||||||
|
Usage:
|
||||||
|
"""
|
||||||
|
|
||||||
default_db = ["information_schema", "performance_schema", "sys", "mysql"]
|
default_db = ["information_schema", "performance_schema", "sys", "mysql"]
|
||||||
def __init__(self, user, password, host="localhost", port=3306) -> None:
|
def __init__(self, user, password, host="localhost", port=3306) -> None:
|
||||||
@@ -26,6 +30,9 @@ class MySQLOperator:
|
|||||||
cursor.execute(_sql)
|
cursor.execute(_sql)
|
||||||
results = cursor.fetchall()
|
results = cursor.fetchall()
|
||||||
return results
|
return results
|
||||||
|
|
||||||
|
def get_index(self, schema_name):
|
||||||
|
pass
|
||||||
|
|
||||||
def get_db_list(self):
|
def get_db_list(self):
|
||||||
with self.conn.cursor() as cursor:
|
with self.conn.cursor() as cursor:
|
||||||
@@ -38,5 +45,7 @@ class MySQLOperator:
|
|||||||
dbs = [d["Database"] for d in results if d["Database"] not in self.default_db]
|
dbs = [d["Database"] for d in results if d["Database"] not in self.default_db]
|
||||||
return dbs
|
return dbs
|
||||||
|
|
||||||
|
def get_meta(self, schema_name):
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
6
pilot/connections/oracle.py
Normal file
6
pilot/connections/oracle.py
Normal file
@@ -0,0 +1,6 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# -*- coding:utf-8 -*-
|
||||||
|
|
||||||
|
class OracleConnector:
|
||||||
|
"""OracleConnector"""
|
||||||
|
pass
|
8
pilot/connections/postgres.py
Normal file
8
pilot/connections/postgres.py
Normal file
@@ -0,0 +1,8 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# -*- coding: utf-8 -*-
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
class PostgresConnector:
|
||||||
|
"""PostgresConnector is a class which Connector to chat with LLM"""
|
||||||
|
pass
|
7
pilot/connections/redis.py
Normal file
7
pilot/connections/redis.py
Normal file
@@ -0,0 +1,7 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# -*- coding:utf-8 -*-
|
||||||
|
|
||||||
|
|
||||||
|
class RedisConnector:
|
||||||
|
"""RedisConnector"""
|
||||||
|
pass
|
@@ -89,7 +89,7 @@ class Conversation:
|
|||||||
|
|
||||||
|
|
||||||
def gen_sqlgen_conversation(dbname):
|
def gen_sqlgen_conversation(dbname):
|
||||||
from pilot.connections.mysql_conn import MySQLOperator
|
from pilot.connections.mysql import MySQLOperator
|
||||||
mo = MySQLOperator(
|
mo = MySQLOperator(
|
||||||
**DB_SETTINGS
|
**DB_SETTINGS
|
||||||
)
|
)
|
||||||
|
@@ -10,7 +10,12 @@ from transformers import (
|
|||||||
|
|
||||||
from fastchat.serve.compression import compress_module
|
from fastchat.serve.compression import compress_module
|
||||||
|
|
||||||
class ModerLoader:
|
class ModelLoader:
|
||||||
|
"""Model loader is a class for model load
|
||||||
|
|
||||||
|
Args: model_path
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
kwargs = {}
|
kwargs = {}
|
||||||
|
|
||||||
|
180
pilot/pturning/lora/finetune.py
Normal file
180
pilot/pturning/lora/finetune.py
Normal file
@@ -0,0 +1,180 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# -*- coding: utf-8 -*-
|
||||||
|
|
||||||
|
import os
|
||||||
|
import json
|
||||||
|
import transformers
|
||||||
|
from transformers import LlamaTokenizer, LlamaForCausalLM
|
||||||
|
|
||||||
|
from typing import List
|
||||||
|
from peft import (
|
||||||
|
LoraConfig,
|
||||||
|
get_peft_model,
|
||||||
|
get_peft_model_state_dict,
|
||||||
|
prepare_model_for_int8_training,
|
||||||
|
)
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from datasets import load_dataset
|
||||||
|
import pandas as pd
|
||||||
|
|
||||||
|
|
||||||
|
from pilot.configs.model_config import DATA_DIR, LLM_MODEL, LLM_MODEL_CONFIG
|
||||||
|
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||||
|
CUTOFF_LEN = 50
|
||||||
|
|
||||||
|
df = pd.read_csv(os.path.join(DATA_DIR, "BTC_Tweets_Updated.csv"))
|
||||||
|
|
||||||
|
def sentiment_score_to_name(score: float):
|
||||||
|
if score > 0:
|
||||||
|
return "Positive"
|
||||||
|
elif score < 0:
|
||||||
|
return "Negative"
|
||||||
|
return "Neutral"
|
||||||
|
|
||||||
|
|
||||||
|
dataset_data = [
|
||||||
|
{
|
||||||
|
"instruction": "Detect the sentiment of the tweet.",
|
||||||
|
"input": row_dict["Tweet"],
|
||||||
|
"output": sentiment_score_to_name(row_dict["New_Sentiment_State"])
|
||||||
|
}
|
||||||
|
for row_dict in df.to_dict(orient="records")
|
||||||
|
]
|
||||||
|
|
||||||
|
with open(os.path.join(DATA_DIR, "alpaca-bitcoin-sentiment-dataset.json"), "w") as f:
|
||||||
|
json.dump(dataset_data, f)
|
||||||
|
|
||||||
|
|
||||||
|
data = load_dataset("json", data_files=os.path.join(DATA_DIR, "alpaca-bitcoin-sentiment-dataset.json"))
|
||||||
|
print(data["train"])
|
||||||
|
|
||||||
|
BASE_MODEL = LLM_MODEL_CONFIG[LLM_MODEL]
|
||||||
|
model = LlamaForCausalLM.from_pretrained(
|
||||||
|
BASE_MODEL,
|
||||||
|
torch_dtype=torch.float16,
|
||||||
|
device_map="auto",
|
||||||
|
offload_folder=os.path.join(DATA_DIR, "vicuna-lora")
|
||||||
|
)
|
||||||
|
|
||||||
|
tokenizer = LlamaTokenizer.from_pretrained(BASE_MODEL)
|
||||||
|
tokenizer.pad_token_id = (0)
|
||||||
|
tokenizer.padding_side = "left"
|
||||||
|
|
||||||
|
def generate_prompt(data_point):
|
||||||
|
return f"""Blow is an instruction that describes a task, paired with an input that provide future context.
|
||||||
|
Write a response that appropriately completes the request. #noqa:
|
||||||
|
|
||||||
|
### Instruct:
|
||||||
|
{data_point["instruction"]}
|
||||||
|
### Input
|
||||||
|
{data_point["input"]}
|
||||||
|
### Response
|
||||||
|
{data_point["output"]}
|
||||||
|
"""
|
||||||
|
|
||||||
|
def tokenize(prompt, add_eos_token=True):
|
||||||
|
result = tokenizer(
|
||||||
|
prompt,
|
||||||
|
truncation=True,
|
||||||
|
max_length=CUTOFF_LEN,
|
||||||
|
padding=False,
|
||||||
|
return_tensors=None,
|
||||||
|
)
|
||||||
|
|
||||||
|
if (result["input_ids"][-1] != tokenizer.eos_token_id and len(result["input_ids"]) < CUTOFF_LEN and add_eos_token):
|
||||||
|
result["input_ids"].append(tokenizer.eos_token_id)
|
||||||
|
result["attention_mask"].append(1)
|
||||||
|
|
||||||
|
result["labels"] = result["input_ids"].copy()
|
||||||
|
return result
|
||||||
|
|
||||||
|
def generate_and_tokenize_prompt(data_point):
|
||||||
|
full_prompt = generate_prompt(data_point)
|
||||||
|
tokenized_full_prompt = tokenize(full_prompt)
|
||||||
|
return tokenized_full_prompt
|
||||||
|
|
||||||
|
|
||||||
|
train_val = data["train"].train_test_split(
|
||||||
|
test_size=200, shuffle=True, seed=42
|
||||||
|
)
|
||||||
|
|
||||||
|
train_data = (
|
||||||
|
train_val["train"].map(generate_and_tokenize_prompt)
|
||||||
|
)
|
||||||
|
|
||||||
|
val_data = (
|
||||||
|
train_val["test"].map(generate_and_tokenize_prompt)
|
||||||
|
)
|
||||||
|
|
||||||
|
# Training
|
||||||
|
LORA_R = 8
|
||||||
|
LORA_ALPHA = 16
|
||||||
|
LORA_DROPOUT = 0.05
|
||||||
|
LORA_TARGET_MODULES = [
|
||||||
|
"q_proj",
|
||||||
|
"v_proj",
|
||||||
|
]
|
||||||
|
|
||||||
|
BATCH_SIZE = 128
|
||||||
|
MICRO_BATCH_SIZE = 4
|
||||||
|
GRADIENT_ACCUMULATION_STEPS = BATCH_SIZE // MICRO_BATCH_SIZE
|
||||||
|
LEARNING_RATE = 3e-4
|
||||||
|
TRAIN_STEPS = 300
|
||||||
|
OUTPUT_DIR = "experiments"
|
||||||
|
|
||||||
|
# We can now prepare model for training
|
||||||
|
model = prepare_model_for_int8_training(model)
|
||||||
|
config = LoraConfig(
|
||||||
|
r = LORA_R,
|
||||||
|
lora_alpha=LORA_ALPHA,
|
||||||
|
target_modules=LORA_TARGET_MODULES,
|
||||||
|
lora_dropout=LORA_DROPOUT,
|
||||||
|
bias="none",
|
||||||
|
task_type="CAUSAL_LM",
|
||||||
|
)
|
||||||
|
|
||||||
|
model = get_peft_model(model, config)
|
||||||
|
model.print_trainable_parameters()
|
||||||
|
|
||||||
|
training_arguments = transformers.TrainingArguments(
|
||||||
|
per_device_train_batch_size=MICRO_BATCH_SIZE,
|
||||||
|
gradient_accumulation_steps=GRADIENT_ACCUMULATION_STEPS,
|
||||||
|
warmup_steps=100,
|
||||||
|
max_steps=TRAIN_STEPS,
|
||||||
|
no_cuda=True,
|
||||||
|
learning_rate=LEARNING_RATE,
|
||||||
|
logging_steps=10,
|
||||||
|
optim="adamw_torch",
|
||||||
|
evaluation_strategy="steps",
|
||||||
|
save_strategy="steps",
|
||||||
|
eval_steps=50,
|
||||||
|
save_steps=50,
|
||||||
|
output_dir=OUTPUT_DIR,
|
||||||
|
save_total_limit=3,
|
||||||
|
load_best_model_at_end=True,
|
||||||
|
report_to="tensorboard"
|
||||||
|
)
|
||||||
|
|
||||||
|
data_collector = transformers.DataCollatorForSeq2Seq(
|
||||||
|
tokenizer, pad_to_multiple_of=8, return_tensors="pt", padding=True
|
||||||
|
)
|
||||||
|
|
||||||
|
trainer = transformers.Trainer(
|
||||||
|
model=model,
|
||||||
|
train_dataset=train_data,
|
||||||
|
eval_dataset=val_data,
|
||||||
|
args=training_arguments,
|
||||||
|
data_collector=data_collector
|
||||||
|
)
|
||||||
|
|
||||||
|
model.config.use_cache = False
|
||||||
|
old_state_dict = model.state_dict
|
||||||
|
model.state_dict = (
|
||||||
|
lambda self, *_, **__: get_peft_model_state_dict(
|
||||||
|
self, old_state_dict()
|
||||||
|
)
|
||||||
|
).__get__(model, type(model))
|
||||||
|
|
||||||
|
trainer.train()
|
||||||
|
model.save_pretrained(OUTPUT_DIR)
|
@@ -13,7 +13,7 @@ from pilot.model.inference import generate_output, get_embeddings
|
|||||||
from fastchat.serve.inference import load_model
|
from fastchat.serve.inference import load_model
|
||||||
|
|
||||||
|
|
||||||
from pilot.model.loader import ModerLoader
|
from pilot.model.loader import ModelLoader
|
||||||
from pilot.configs.model_config import *
|
from pilot.configs.model_config import *
|
||||||
|
|
||||||
model_path = LLM_MODEL_CONFIG[LLM_MODEL]
|
model_path = LLM_MODEL_CONFIG[LLM_MODEL]
|
||||||
@@ -22,7 +22,7 @@ model_path = LLM_MODEL_CONFIG[LLM_MODEL]
|
|||||||
global_counter = 0
|
global_counter = 0
|
||||||
model_semaphore = None
|
model_semaphore = None
|
||||||
|
|
||||||
ml = ModerLoader(model_path=model_path)
|
ml = ModelLoader(model_path=model_path)
|
||||||
model, tokenizer = ml.loader(num_gpus=1, load_8bit=ISLOAD_8BIT, debug=ISDEBUG)
|
model, tokenizer = ml.loader(num_gpus=1, load_8bit=ISLOAD_8BIT, debug=ISDEBUG)
|
||||||
#model, tokenizer = load_model(model_path=model_path, device=DEVICE, num_gpus=1, load_8bit=True, debug=False)
|
#model, tokenizer = load_model(model_path=model_path, device=DEVICE, num_gpus=1, load_8bit=True, debug=False)
|
||||||
|
|
||||||
|
@@ -12,7 +12,7 @@ import requests
|
|||||||
from urllib.parse import urljoin
|
from urllib.parse import urljoin
|
||||||
from pilot.configs.model_config import DB_SETTINGS
|
from pilot.configs.model_config import DB_SETTINGS
|
||||||
from pilot.server.vectordb_qa import KnownLedgeBaseQA
|
from pilot.server.vectordb_qa import KnownLedgeBaseQA
|
||||||
from pilot.connections.mysql_conn import MySQLOperator
|
from pilot.connections.mysql import MySQLOperator
|
||||||
from pilot.vector_store.extract_tovec import get_vector_storelist, load_knownledge_from_doc, knownledge_tovec_st
|
from pilot.vector_store.extract_tovec import get_vector_storelist, load_knownledge_from_doc, knownledge_tovec_st
|
||||||
|
|
||||||
from pilot.configs.model_config import LOGDIR, VICUNA_MODEL_SERVER, LLM_MODEL, DATASETS_DIR
|
from pilot.configs.model_config import LOGDIR, VICUNA_MODEL_SERVER, LLM_MODEL, DATASETS_DIR
|
||||||
|
21
pilot/singleton.py
Normal file
21
pilot/singleton.py
Normal file
@@ -0,0 +1,21 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# -*- coding: utf-8 -*-
|
||||||
|
|
||||||
|
"""The singleton metaclass for ensuring only one instance of a class."""
|
||||||
|
import abc
|
||||||
|
from typing import Any
|
||||||
|
|
||||||
|
class Singleton(abc.ABCMeta, type):
|
||||||
|
""" Singleton metaclass for ensuring only one instance of a class"""
|
||||||
|
|
||||||
|
_instances = {}
|
||||||
|
def __call__(cls, *args: Any, **kwargs: Any) -> Any:
|
||||||
|
"""Call method for the singleton metaclass"""
|
||||||
|
if cls not in cls._instances:
|
||||||
|
cls._instances[cls] = super(Singleton, cls).__call__(*args, **kwargs)
|
||||||
|
return cls._instances[cls]
|
||||||
|
|
||||||
|
|
||||||
|
class AbstractSingleton(abc.ABC, metaclass=Singleton):
|
||||||
|
"""Abstract singleton class for ensuring only one instance of a class"""
|
||||||
|
pass
|
@@ -15,6 +15,20 @@ from pilot.configs.model_config import VECTORE_PATH, DATASETS_DIR, LLM_MODEL_CON
|
|||||||
|
|
||||||
class KnownLedge2Vector:
|
class KnownLedge2Vector:
|
||||||
|
|
||||||
|
"""KnownLedge2Vector class is order to load document to vector
|
||||||
|
and persist to vector store.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
- model_name
|
||||||
|
|
||||||
|
Usage:
|
||||||
|
k2v = KnownLedge2Vector()
|
||||||
|
persist_dir = os.path.join(VECTORE_PATH, ".vectordb")
|
||||||
|
print(persist_dir)
|
||||||
|
for s, dc in k2v.query("what is oceanbase?"):
|
||||||
|
print(s, dc.page_content, dc.metadata)
|
||||||
|
|
||||||
|
"""
|
||||||
embeddings: object = None
|
embeddings: object = None
|
||||||
model_name = LLM_MODEL_CONFIG["sentence-transforms"]
|
model_name = LLM_MODEL_CONFIG["sentence-transforms"]
|
||||||
top_k: int = VECTOR_SEARCH_TOP_K
|
top_k: int = VECTOR_SEARCH_TOP_K
|
||||||
@@ -81,11 +95,4 @@ class KnownLedge2Vector:
|
|||||||
dc, s = doc
|
dc, s = doc
|
||||||
yield s, dc
|
yield s, dc
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
k2v = KnownLedge2Vector()
|
|
||||||
|
|
||||||
persist_dir = os.path.join(VECTORE_PATH, ".vectordb")
|
|
||||||
print(persist_dir)
|
|
||||||
for s, dc in k2v.query("什么是OceanBase"):
|
|
||||||
print(s, dc.page_content, dc.metadata)
|
|
||||||
|
|
Reference in New Issue
Block a user