mirror of
https://github.com/csunny/DB-GPT.git
synced 2025-08-09 20:28:07 +00:00
Merge remote-tracking branch 'origin/dev_ty_06_end' into llm_framework
This commit is contained in:
commit
1efaa55515
@ -18,6 +18,7 @@ class Config(metaclass=Singleton):
|
||||
"""Initialize the Config class"""
|
||||
|
||||
self.NEW_SERVER_MODE = False
|
||||
self.SERVER_LIGHT_MODE = False
|
||||
|
||||
# Gradio language version: en, zh
|
||||
self.LANGUAGE = os.getenv("LANGUAGE", "en")
|
||||
|
@ -1,10 +1,17 @@
|
||||
import json
|
||||
from pilot.common.sql_database import Database
|
||||
from pilot.configs.config import Config
|
||||
|
||||
CFG = Config()
|
||||
|
||||
if __name__ == "__main__":
|
||||
connect = CFG.local_db.get_session("gpt-user")
|
||||
datas = CFG.local_db.run(connect, "SELECT * FROM users; ")
|
||||
# connect = CFG.local_db.get_session("gpt-user")
|
||||
# datas = CFG.local_db.run(connect, "SELECT * FROM users; ")
|
||||
|
||||
# print(datas)
|
||||
|
||||
str = """{ "thoughts": "thought text", "sql": "SELECT COUNT(DISTINCT user_id) FROM transactions_order WHERE user_id IN (SELECT DISTINCT user_id FROM users WHERE country='China') AND create_time BETWEEN 20230101 AND 20230131" ,}"""
|
||||
|
||||
print(str.find("["))
|
||||
|
||||
|
||||
print(datas)
|
||||
|
@ -11,10 +11,10 @@ def generate_stream(
|
||||
"""Fork from fastchat: https://github.com/lm-sys/FastChat/blob/main/fastchat/serve/inference.py"""
|
||||
prompt = params["prompt"]
|
||||
l_prompt = len(prompt)
|
||||
prompt= prompt.replace("ai:", "assistant:").replace("human:", "user:")
|
||||
temperature = float(params.get("temperature", 1.0))
|
||||
max_new_tokens = int(params.get("max_new_tokens", 2048))
|
||||
stop_str = params.get("stop", None)
|
||||
|
||||
input_ids = tokenizer(prompt).input_ids
|
||||
output_ids = list(input_ids)
|
||||
|
||||
|
@ -113,25 +113,36 @@ class BaseOutputParser(ABC):
|
||||
ai_response = ai_response.replace("\n", " ")
|
||||
ai_response = ai_response.replace("\_", "_")
|
||||
ai_response = ai_response.replace("\*", "*")
|
||||
ai_response = ai_response.replace("\t", "")
|
||||
print("un_stream ai response:", ai_response)
|
||||
return ai_response
|
||||
else:
|
||||
raise ValueError("Model server error!code=" + resp_obj_ex["error_code"])
|
||||
|
||||
def __illegal_json_ends(self, s):
|
||||
temp_json = s
|
||||
illegal_json_ends_1 = [", }", ",}"]
|
||||
illegal_json_ends_2 = ", ]", ",]"
|
||||
for illegal_json_end in illegal_json_ends_1:
|
||||
temp_json = temp_json.replace(illegal_json_end, " }")
|
||||
for illegal_json_end in illegal_json_ends_2:
|
||||
temp_json = temp_json.replace(illegal_json_end, " ]")
|
||||
return temp_json
|
||||
|
||||
def __extract_json(self, s):
|
||||
|
||||
temp_json = self.__json_interception(s, True)
|
||||
if not temp_json:
|
||||
temp_json = self.__json_interception(s)
|
||||
try:
|
||||
json.loads(temp_json)
|
||||
temp_json = self.__illegal_json_ends(temp_json)
|
||||
return temp_json
|
||||
except Exception as e:
|
||||
raise ValueError("Failed to find a valid json response!" + temp_json)
|
||||
|
||||
def __json_interception(self, s, is_json_array: bool = False):
|
||||
if is_json_array:
|
||||
i = s.index("[")
|
||||
i = s.find("[")
|
||||
if i <0:
|
||||
return None
|
||||
count = 1
|
||||
@ -145,7 +156,7 @@ class BaseOutputParser(ABC):
|
||||
assert count == 0
|
||||
return s[i: j + 1]
|
||||
else:
|
||||
i = s.index("{")
|
||||
i = s.find("{")
|
||||
if i <0:
|
||||
return None
|
||||
count = 1
|
||||
@ -189,6 +200,7 @@ class BaseOutputParser(ABC):
|
||||
.replace("\\n", " ")
|
||||
.replace("\\", " ")
|
||||
)
|
||||
cleaned_output = self.__illegal_json_ends(cleaned_output)
|
||||
return cleaned_output
|
||||
|
||||
def parse_view_response(self, ai_text, data) -> str:
|
||||
|
@ -51,6 +51,9 @@ class PromptTemplate(BaseModel, ABC):
|
||||
|
||||
need_historical_messages: bool = False
|
||||
|
||||
temperature: float = 0.6
|
||||
max_new_tokens: int = 1024
|
||||
|
||||
class Config:
|
||||
"""Configuration for this pydantic object."""
|
||||
|
||||
|
@ -48,8 +48,6 @@ CFG = Config()
|
||||
class BaseChat(ABC):
|
||||
chat_scene: str = None
|
||||
llm_model: Any = None
|
||||
temperature: float = 0.6
|
||||
max_new_tokens: int = 1024
|
||||
# By default, keep the last two rounds of conversation records as the context
|
||||
chat_retention_rounds: int = 1
|
||||
|
||||
@ -118,8 +116,8 @@ class BaseChat(ABC):
|
||||
payload = {
|
||||
"model": self.llm_model,
|
||||
"prompt": self.generate_llm_text(),
|
||||
"temperature": float(self.temperature),
|
||||
"max_new_tokens": int(self.max_new_tokens),
|
||||
"temperature": float(self.prompt_template.temperature),
|
||||
"max_new_tokens": int(self.prompt_template.max_new_tokens),
|
||||
"stop": self.prompt_template.sep,
|
||||
}
|
||||
return payload
|
||||
@ -128,6 +126,7 @@ class BaseChat(ABC):
|
||||
# TODO Retry when server connection error
|
||||
payload = self.__call_base()
|
||||
|
||||
|
||||
self.skip_echo_len = len(payload.get("prompt").replace("</s>", " ")) + 11
|
||||
logger.info(f"Requert: \n{payload}")
|
||||
ai_response_text = ""
|
||||
|
@ -3,7 +3,7 @@
|
||||
"name": "sale_report",
|
||||
"introduce": "",
|
||||
"layout": "TODO",
|
||||
"supported_chart_type":["HeatMap","sheet", "LineChart", "PieChart", "BarChart", "Scatterplot", "IndicatorValue", "Table"],
|
||||
"supported_chart_type":["FacetChart", "GaugeChart", "RadarChart", "Sheet", "LineChart", "PieChart", "BarChart", "PointChart", "KeyMetrics"],
|
||||
"key_metrics":[],
|
||||
"trends": []
|
||||
}
|
@ -11,11 +11,11 @@ EXAMPLES = [
|
||||
"data": {
|
||||
"content": """{
|
||||
\"thoughts\": \"thought text\",
|
||||
\"sql\": \"SELECT city FROM users where user_name='test1'\",
|
||||
\"sql\": \"SELECT city FROM user where user_name='test1'\",
|
||||
}""",
|
||||
"example": True,
|
||||
},
|
||||
},
|
||||
}
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -26,13 +26,13 @@ EXAMPLES = [
|
||||
"data": {
|
||||
"content": """{
|
||||
\"thoughts\": \"thought text\",
|
||||
\"sql\": \"SELECT b.* FROM users a LEFT JOIN tran_order b ON a.user_name=b.user_name where a.city='成都'\",
|
||||
\"sql\": \"SELECT b.* FROM user a LEFT JOIN tran_order b ON a.user_name=b.user_name where a.city='成都'\",
|
||||
}""",
|
||||
"example": True,
|
||||
},
|
||||
},
|
||||
}
|
||||
}
|
||||
]
|
||||
},
|
||||
}
|
||||
]
|
||||
|
||||
sql_data_example = ExampleSelector(
|
||||
|
@ -35,15 +35,16 @@ class DbChatOutputParser(BaseOutputParser):
|
||||
if len(data) <= 1:
|
||||
data.insert(0, ["result"])
|
||||
df = pd.DataFrame(data[1:], columns=data[0])
|
||||
if not CFG.NEW_SERVER_MODE:
|
||||
if not CFG.NEW_SERVER_MODE and not CFG.SERVER_LIGHT_MODE:
|
||||
table_style = """<style>
|
||||
table{border-collapse:collapse;width:100%;height:80%;margin:0 auto;float:center;border: 1px solid #007bff; background-color:#333; color:#fff}th,td{border:1px solid #ddd;padding:3px;text-align:center}th{background-color:#C9C3C7;color: #fff;font-weight: bold;}tr:nth-child(even){background-color:#444}tr:hover{background-color:#444}
|
||||
</style>"""
|
||||
html_table = df.to_html(index=False, escape=False)
|
||||
html = f"<html><head>{table_style}</head><body>{html_table}</body></html>"
|
||||
else:
|
||||
html = df.to_html(index=False, escape=False, sparsify=False)
|
||||
html = "".join(html.split())
|
||||
html_table = df.to_html(index=False, escape=False, sparsify=False)
|
||||
table_str = "".join(html_table.split())
|
||||
html = f"""<div class="w-full overflow-auto">{table_str}</table></div>"""
|
||||
|
||||
view_text = f"##### {str(speak)}" + "\n" + html.replace("\n", " ")
|
||||
return view_text
|
||||
|
@ -10,9 +10,8 @@ CFG = Config()
|
||||
|
||||
PROMPT_SCENE_DEFINE = None
|
||||
|
||||
|
||||
_DEFAULT_TEMPLATE = """
|
||||
You are a SQL expert. Given an input question, create a syntactically correct {dialect} query.
|
||||
You are a SQL expert. Given an input question, create a syntactically correct {dialect} sql.
|
||||
|
||||
Unless the user specifies in his question a specific number of examples he wishes to obtain, always limit your query to at most {top_k} results.
|
||||
Use as few tables as possible when querying.
|
||||
@ -36,6 +35,11 @@ PROMPT_SEP = SeparatorStyle.SINGLE.value
|
||||
|
||||
PROMPT_NEED_NEED_STREAM_OUT = False
|
||||
|
||||
# Temperature is a configuration hyperparameter that controls the randomness of language model output.
|
||||
# A high temperature produces more unpredictable and creative results, while a low temperature produces more common and conservative output.
|
||||
# For example, if you adjust the temperature to 0.5, the model will usually generate text that is more predictable and less creative than if you set the temperature to 1.0.
|
||||
PROMPT_TEMPERATURE = 0.5
|
||||
|
||||
prompt = PromptTemplate(
|
||||
template_scene=ChatScene.ChatWithDbExecute.value(),
|
||||
input_variables=["input", "table_info", "dialect", "top_k", "response"],
|
||||
@ -47,5 +51,6 @@ prompt = PromptTemplate(
|
||||
sep=PROMPT_SEP, is_stream_out=PROMPT_NEED_NEED_STREAM_OUT
|
||||
),
|
||||
example_selector=sql_data_example,
|
||||
temperature=PROMPT_TEMPERATURE
|
||||
)
|
||||
CFG.prompt_templates.update({prompt.template_scene: prompt})
|
||||
|
@ -14,8 +14,8 @@ EXAMPLES = [
|
||||
\"command\": {\"name\": \"command name\", \"args\": {\"arg name\": \"value\"}},
|
||||
}""",
|
||||
"example": True,
|
||||
},
|
||||
},
|
||||
}
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -30,10 +30,10 @@ EXAMPLES = [
|
||||
\"command\": {\"name\": \"command name\", \"args\": {\"arg name\": \"value\"}},
|
||||
}""",
|
||||
"example": True,
|
||||
},
|
||||
},
|
||||
}
|
||||
}
|
||||
]
|
||||
},
|
||||
}
|
||||
]
|
||||
|
||||
plugin_example = ExampleSelector(examples_record=EXAMPLES, use_example=True)
|
||||
|
@ -103,7 +103,8 @@ if __name__ == "__main__":
|
||||
from pilot.server.llmserver import worker
|
||||
worker.start_check()
|
||||
CFG.NEW_SERVER_MODE = True
|
||||
|
||||
else:
|
||||
CFG.SERVER_LIGHT_MODE = True
|
||||
|
||||
import uvicorn
|
||||
uvicorn.run(app, host="0.0.0.0", port=args.port)
|
||||
|
Loading…
Reference in New Issue
Block a user