doc: clear

This commit is contained in:
csunny
2023-06-01 20:58:07 +08:00
parent 8027af61c3
commit 221856623b
17 changed files with 38 additions and 106 deletions

View File

@@ -1,8 +1,15 @@
# DB-GPT ![GitHub Repo stars](https://img.shields.io/github/stars/csunny/db-gpt?style=social)
<div align="center">
<p>
<a href="https://github.com/csunny/DB-GPT">
<img alt="stars" src="https://img.shields.io/github/stars/csunny/db-gpt?style=social" />
</a>
<a href="https://github.com/csunny/DB-GPT">
<img alt="forks" src="https://img.shields.io/github/forks/csunny/db-gpt?style=social" />
</a>
</p>
---
[简体中文](README.zh.md)
[**简体中文**](README.zh.md)|[**Discord**](https://discord.gg/ea6BnZkY)
</div>
[![Star History Chart](https://api.star-history.com/svg?repos=csunny/DB-GPT)](https://star-history.com/#csunny/DB-GPT)
@@ -12,6 +19,14 @@ As large models are released and iterated upon, they are becoming increasingly i
DB-GPT is an experimental open-source project that uses localized GPT large models to interact with your data and environment. With this solution, you can be assured that there is no risk of data leakage, and your data is 100% private and secure.
## News
- [2023/06/01]🔥 On the basis of the Vicuna-13B basic model, task chain calls are implemented through plugins. For example, the implementation of creating a database with a single sentence.[demo]()
- [2023/06/01]🔥 QLoRA guanaco(7b, 13b, 33b) support.
- [2023/05/28]🔥 Learning from crawling data from the Internet [demo](./assets/chaturl_en.gif)
- [2023/05/21] Generate SQL and execute it automatically. [demo](./assets/auto_sql_en.gif)
- [2023/05/15] Chat with documents. [demo](./assets/new_knownledge_en.gif)
- [2023/05/06] SQL generation and diagnosis. [demo](./assets/demo_en.gif)
## Features
Currently, we have released multiple key features, which are listed below to demonstrate our current capabilities:
@@ -38,53 +53,6 @@ Currently, we have released multiple key features, which are listed below to dem
Run on an RTX 4090 GPU. [YouTube](https://www.youtube.com/watch?v=1PWI6F89LPo)
### Run
<p align="center">
<img src="./assets/demo_en.gif" width="600px" />
</p>
### Run Plugin
<p align="center">
<img src="./assets/auto_sql_en.gif" width="600px" />
</p>
### SQL Generation
1. Generate Create Table SQL
<p align="center">
<img src="./assets/SQL_Gen_CreateTable_en.png" width="600px" />
</p>
2. Generating executable SQL:To generate executable SQL, first select the corresponding database and then the model can generate SQL based on the corresponding database schema information. The successful result of running it would be demonstrated as follows:
<p align="center">
<img src="./assets/exeable_en.png" width="600px" />
</p>
### Q&A
<p align="center">
<img src="./assets/DB_QA_en.png" width="600px" />
</p>
1. Based on the default built-in knowledge base, question and answer.
<p align="center">
<img src="./assets/Knownledge_based_QA_en.png" width="600px" />
</p>
2. Add your own knowledge base.
<p align="center">
<img src="./assets/new_knownledge_en.gif" width="600px" />
</p>
3. Learning from crawling data from the Internet
- TODO
## Introduction
DB-GPT creates a vast model operating system using [FastChat](https://github.com/lm-sys/FastChat) and offers a large language model powered by [Vicuna](https://huggingface.co/Tribbiani/vicuna-7b). In addition, we provide private domain knowledge base question-answering capability through LangChain. Furthermore, we also provide support for additional plugins, and our design natively supports the Auto-GPT plugin.

View File

@@ -1,6 +1,15 @@
# DB-GPT ![GitHub Repo stars](https://img.shields.io/github/stars/csunny/db-gpt?style=social)
<div align="center">
<p>
<a href="https://github.com/csunny/DB-GPT">
<img alt="stars" src="https://img.shields.io/github/stars/csunny/db-gpt?style=social" />
</a>
<a href="https://github.com/csunny/DB-GPT">
<img alt="forks" src="https://img.shields.io/github/forks/csunny/db-gpt?style=social" />
</a>
</p>
[English](README.zh.md)
[**English**](README.md)|[**Discord**](https://discord.gg/ea6BnZkY)
</div>
[![Star History Chart](https://api.star-history.com/svg?repos=csunny/DB-GPT)](https://star-history.com/#csunny/DB-GPT)
@@ -9,6 +18,14 @@
DB-GPT 是一个开源的以数据库为基础的GPT实验项目使用本地化的GPT大模型与您的数据和环境进行交互无数据泄露风险100% 私密100% 安全。
## 最新发布
- [2023/06/01]🔥 在Vicuna-13B基础模型的基础上通过插件实现任务链调用。例如单句创建数据库的实现.[演示]()
- [2023/06/01]🔥 QLoRA guanaco(原驼)支持, 支持4090运行33B
- [2023/05/28]🔥根据URL进行对话 [演示](./assets/chaturl_en.gif)
- [2023/05/21] SQL生成与自动执行. [演示](./assets/auto_sql.gif)
- [2023/05/15] 知识库对话 [演示](./assets/new_knownledge.gif)
- [2023/05/06] SQL生成与诊断 [演示](./assets/演示.gif)
## 特性一览
@@ -33,59 +50,6 @@ DB-GPT 是一个开源的以数据库为基础的GPT实验项目使用本地
## 效果演示
示例通过 RTX 4090 GPU 演示,[YouTube 地址](https://www.youtube.com/watch?v=1PWI6F89LPo)
### 运行环境演示
<p align="center">
<img src="./assets/演示.gif" width="600px" />
</p>
### SQL 插件化执行
<p align="center">
<img src="./assets/auto_sql.gif" width="600px" />
</p>
### SQL 生成
1. 生成建表语句
<p align="center">
<img src="./assets/SQL_Gen_CreateTable.png" width="600px" />
</p>
2. 生成可运行SQL
首先选择对应的数据库, 然后模型即可根据对应的数据库 Schema 信息生成 SQL, 运行成功的效果如下面的演示:
<p align="center">
<img src="./assets/exeable.png" width="600px" />
</p>
3. 自动分析执行SQL输出运行结果
<p align="center">
<img src="./assets/Auto-DB-GPT.png" width="600px" />
</p>
### 数据库问答
<p align="center">
<img src="./assets/DB_QA.png" width="600px" />
</p>
1. 基于默认内置知识库问答
<p align="center">
<img src="./assets/VectorDBQA.png" width="600px" />
</p>
2. 自己新增知识库
<p align="center">
<img src="./assets/new_knownledge.gif" width="600px" />
</p>
3. 从网络自己爬取数据学习
- TODO
## 架构方案
DB-GPT基于 [FastChat](https://github.com/lm-sys/FastChat) 构建大模型运行环境,并提供 vicuna 作为基础的大语言模型。此外我们通过LangChain提供私域知识库问答能力。同时我们支持插件模式, 在设计上原生支持Auto-GPT插件。

Binary file not shown.

Before

Width:  |  Height:  |  Size: 2.4 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 88 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 243 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 300 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 310 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 297 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 297 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 567 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 560 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 3.1 MiB

After

Width:  |  Height:  |  Size: 2.2 MiB

BIN
assets/chaturl_en.gif Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.0 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 277 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 947 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 78 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 164 KiB