doc:faq and llama.cpp llm usage

This commit is contained in:
aries_ckt 2023-08-17 21:53:35 +08:00
parent 013f363432
commit 281ea7cee6
6 changed files with 606 additions and 141 deletions

View File

@ -148,25 +148,29 @@ DB-GPT基于 [FastChat](https://github.com/lm-sys/FastChat) 构建大模型运
- [DB-GPT-Web](https://github.com/csunny/DB-GPT-Web) 多端交互前端界面
## Image
🌐 [AutoDL镜像](https://www.codewithgpu.com/i/csunny/DB-GPT/dbgpt-0.3.1-v2)
🌐 [阿里云镜像](http://dbgpt.site/web/#/p/dc4bb97e0bc15302dbf3a5d5571142dd)
## 安装
[快速开始](https://db-gpt.readthedocs.io/projects/db-gpt-docs-zh-cn/zh_CN/latest/getting_started/getting_started.html)
![Docker](https://img.shields.io/badge/docker-%230db7ed.svg?style=for-the-badge&logo=docker&logoColor=white)
![Linux](https://img.shields.io/badge/Linux-FCC624?style=for-the-badge&logo=linux&logoColor=black)
![macOS](https://img.shields.io/badge/mac%20os-000000?style=for-the-badge&logo=macos&logoColor=F0F0F0)
[**快速开始
**](https://db-gpt.readthedocs.io/projects/db-gpt-docs-zh-cn/zh_CN/latest/getting_started/getting_started.html)
### 多语言切换
在.env 配置文件当中修改LANGUAGE参数来切换使用不同的语言默认是英文(中文zh, 英文en, 其他语言待补充)
### 平台部署
- autodl
[autodl镜像](https://www.codewithgpu.com/i/csunny/DB-GPT/csunny-db-gpt),从头搭建可参考镜像说明,或通过`docker pull`获取共享镜像,按照文档中的说明操作即可,若有问题,欢迎评论。
在.env 配置文件当中修改LANGUAGE参数来切换使用不同的语言默认是英文(中文zh, 英文en, 其他语言待补充)
## 使用说明
### 多模型使用
[使用指南](https://db-gpt.readthedocs.io/projects/db-gpt-docs-zh-cn/zh_CN/latest/modules/llms.html)
[使用指南](https://db-gpt.readthedocs.io/projects/db-gpt-docs-zh-cn/zh_CN/latest/modules/llms.html)
如果在使用知识库时遇到与nltk相关的错误您需要安装nltk工具包。更多详情请参见[nltk文档](https://www.nltk.org/data.html)
Run the Python interpreter and type the commands:

View File

@ -61,8 +61,11 @@ Once the environment is installed, we have to create a new folder "models" in th
```{tip}
Notice make sure you have install git-lfs
centos:yum install git-lfs
ubuntu:app-get install git-lfs
macos:brew install git-lfs
```
@ -99,10 +102,16 @@ You can configure basic parameters in the .env file, for example setting LLM_MOD
```bash
$ python pilot/server/dbgpt_server.py
```
Open http://localhost:5000 with your browser to see the product.
If you want to access an external LLM service, you need to 1.set the variables LLM_MODEL=YOUR_MODEL_NAME MODEL_SERVER=YOUR_MODEL_SERVEReg:http://localhost:5000 in the .env file.
```tip
If you want to access an external LLM service, you need to
1.set the variables LLM_MODEL=YOUR_MODEL_NAME, MODEL_SERVER=YOUR_MODEL_SERVEReg:http://localhost:5000 in the .env file.
2.execute dbgpt_server.py in light mode
```
If you want to learn about dbgpt-webui, read https://github./csunny/DB-GPT/tree/new-page-framework/datacenter
@ -110,8 +119,7 @@ If you want to learn about dbgpt-webui, read https://github./csunny/DB-GPT/tree/
$ python pilot/server/dbgpt_server.py --light
```
### 4. Multiple GPUs
### Multiple GPUs
DB-GPT will use all available gpu by default. And you can modify the setting `CUDA_VISIBLE_DEVICES=0,1` in `.env` file to use the specific gpu IDs.
@ -127,7 +135,7 @@ CUDA_VISIBLE_DEVICES=3,4,5,6 python3 pilot/server/dbgpt_server.py
You can modify the setting `MAX_GPU_MEMORY=xxGib` in `.env` file to configure the maximum memory used by each GPU.
### 5. Not Enough Memory
### Not Enough Memory
DB-GPT supported 8-bit quantization and 4-bit quantization.

View File

@ -8,7 +8,7 @@ msgid ""
msgstr ""
"Project-Id-Version: DB-GPT 👏👏 0.3.0\n"
"Report-Msgid-Bugs-To: \n"
"POT-Creation-Date: 2023-08-16 18:31+0800\n"
"POT-Creation-Date: 2023-08-17 21:23+0800\n"
"PO-Revision-Date: YEAR-MO-DA HO:MI+ZONE\n"
"Last-Translator: FULL NAME <EMAIL@ADDRESS>\n"
"Language: zh_CN\n"
@ -19,22 +19,129 @@ msgstr ""
"Content-Transfer-Encoding: 8bit\n"
"Generated-By: Babel 2.12.1\n"
#: ../../faq.md:8 ded9afcc91594bce8950aa688058a5b6
#: ../../faq.md:1 a39cbc25271841d79095c1557a817a76
msgid "FAQ"
msgstr ""
#: ../../faq.md:2 b08ce199a11b4d309142866a637bc3d0
msgid "Q1: text2vec-large-chinese not found"
msgstr ""
#: ../../faq.md:4 754a61fa05a846f4847bd988c4049ceb
msgid ""
"A1: make sure you have download text2vec-large-chinese embedding model in"
" right way"
msgstr ""
#: ../../faq.md:16 5a3d32eacdd94f59bb4039c3d6380fc9
msgid ""
"Q2: execute `pip install -r requirements.txt` error, found some package "
"cannot find correct version."
msgstr ""
#: ../../faq.md:19 54b322726a074d6d9c1a957310774aba
msgid "A2: change the pip source."
msgstr ""
#: ../../faq.md:26 ../../faq.md:33 0c238f86900243e5b5e9a49e4ef37063
#: 245e48f636524172b1b9ba4144946007
msgid "or"
msgstr ""
#: ../../faq.md:41 f2f7025f324c4065abf244a3adb4e4f6
msgid "Q3:Access denied for user 'root@localhost'(using password :NO)"
msgstr ""
#: ../../faq.md:43 f14fd1c2d2ed454491e0a876fd2971a4
msgid "A3: make sure you have installed mysql instance in right way"
msgstr ""
#: ../../faq.md:45 6d499bfb6c0142ec838f68696f793c3d
msgid "Docker:"
msgstr ""
#: ../../faq.md:49 71137fe8a30d42e7943dd2a4402b2094
msgid "Normal: [download mysql instance](https://dev.mysql.com/downloads/mysql/)"
msgstr ""
#: ../../faq.md:52 ec5d5f79cbe54328902e6e9b820276e7
msgid "Q4:When I use openai(MODEL_SERVER=proxyllm) to chat"
msgstr ""
#: ../../faq.md:58 d2cbee8bbfd54b4b853ccbdbf1c30c97
msgid "A4: make sure your openapi API_KEY is available"
msgstr ""
#: ../../faq.md:60 c506819975c841468af1899730df3ed1
msgid "Q5:When I Chat Data and Chat Meta Data, I found the error"
msgstr "Chat Data and Chat Meta Data报如下错"
#: ../../faq.md:13 25237221f65c47a2b62f5afbe637d6e7
#: ../../faq.md:67 af52123acad74c28a50f93d53da6afa9
msgid "A5: you have not create your database and table"
msgstr "需要创建自己的数据库"
#: ../../faq.md:14 8c9024f1f4d7414499587e3bdf7d56d1
#: ../../faq.md:68 05bf6d858df44157bfb5480f9e8759fb
msgid "1.create your database."
msgstr "1.先创建数据库"
#: ../../faq.md:20 afc7299d3b4e4d98b17fd6157d440970
#: ../../faq.md:74 363d4fbb2a474c64a54c2659844596b5
msgid "2.create table {$your_table} and insert your data. eg:"
msgstr "然后创建数据表,模拟数据"
#: ../../faq.md:88 5f3a9b9d7e6f444a87deb17b5a1a45af
msgid "Q6:How to change Vector DB Type in DB-GPT."
msgstr ""
#: ../../faq.md:90 ee1d4dfa813942e1a3d1219f21bc041f
msgid "A6: Update .env file and set VECTOR_STORE_TYPE."
msgstr ""
#: ../../faq.md:91 71e9e9905bdb46e1925f66a6c12a6afd
msgid ""
"DB-GPT currently support Chroma(Default), Milvus(>2.1), Weaviate vector "
"database. If you want to change vector db, Update your .env, set your "
"vector store type, VECTOR_STORE_TYPE=Chroma (now only support Chroma and "
"Milvus(>2.1), if you set Milvus, please set MILVUS_URL and MILVUS_PORT) "
"If you want to support more vector db, you can integrate yourself.[how to"
" integrate](https://db-gpt.readthedocs.io/en/latest/modules/vector.html)"
msgstr ""
#: ../../faq.md:107 d6c4ed8ff8244aa8aef6ea8d8f0a5555
msgid "Q7:When I use vicuna-13b, found some illegal character like this."
msgstr ""
#: ../../faq.md:112 911a5051c37244e1b6ea9d3b1bd1fd97
msgid ""
"A7: set KNOWLEDGE_SEARCH_TOP_SIZE smaller or set KNOWLEDGE_CHUNK_SIZE "
"smaller, and reboot server."
msgstr ""
#: ../../faq.md:114 0566430bbc0541709ed60b81c7372175
msgid ""
"Q8:space add error (pymysql.err.OperationalError) (1054, \"Unknown column"
" 'knowledge_space.context' in 'field list'\")"
msgstr ""
#: ../../faq.md:117 37419da934b44575bd39bcffffa81482
msgid "A8:"
msgstr ""
#: ../../faq.md:118 1c5f46dbccc342329b544ac174a79994
msgid "1.shutdown dbgpt_server(ctrl c)"
msgstr ""
#: ../../faq.md:120 35bb76e9d9ec4230a8fab9aed475a4d7
msgid "2.add column context for table knowledge_space"
msgstr ""
#: ../../faq.md:124 e198605e42d4452680359487abc349a3
msgid "3.execute sql ddl"
msgstr ""
#: ../../faq.md:129 88495f3e66c448faab9f06c4c5cd27ef
msgid "4.restart dbgpt server"
msgstr ""
#~ msgid "FAQ"
#~ msgstr "FAQ"

View File

@ -8,7 +8,7 @@ msgid ""
msgstr ""
"Project-Id-Version: DB-GPT 👏👏 0.3.5\n"
"Report-Msgid-Bugs-To: \n"
"POT-Creation-Date: 2023-08-16 23:15+0800\n"
"POT-Creation-Date: 2023-08-17 21:23+0800\n"
"PO-Revision-Date: YEAR-MO-DA HO:MI+ZONE\n"
"Last-Translator: FULL NAME <EMAIL@ADDRESS>\n"
"Language: zh_CN\n"
@ -20,34 +20,34 @@ msgstr ""
"Generated-By: Babel 2.12.1\n"
#: ../../getting_started/install/deploy/deploy.md:1
#: de443fce549545518824a89604028a2e
#: de0b03c3b94a4e2aad7d380f532b85c0
msgid "Installation From Source"
msgstr "源码安装"
#: ../../getting_started/install/deploy/deploy.md:3
#: d7b1a80599004c589c9045eba98cc5c9
#: 65a034e1a90f40bab24899be901cc97f
msgid ""
"This tutorial gives you a quick walkthrough about use DB-GPT with you "
"environment and data."
msgstr "本教程为您提供了关于如何使用DB-GPT的使用指南。"
#: ../../getting_started/install/deploy/deploy.md:5
#: 0ba98573194c4108aedaa2669915e949
#: 33b15956f7ef446a9aa4cac014163884
msgid "Installation"
msgstr "安装"
#: ../../getting_started/install/deploy/deploy.md:7
#: b8f465fcee2b45009bb1c6356df06b20
#: ad64dc334e8e43bebc8873afb27f7b15
msgid "To get started, install DB-GPT with the following steps."
msgstr "请按照以下步骤安装DB-GPT"
#: ../../getting_started/install/deploy/deploy.md:9
#: fd5031c97e304023bd6880cd10d58413
#: 33e12a5bef6c45dbb30fbffae556b664
msgid "1. Hardware Requirements"
msgstr "1. 硬件要求"
#: ../../getting_started/install/deploy/deploy.md:10
#: 05f570b3999f465982c2648f658aed82
#: dfd3b7c074124de78169f34168b7c757
msgid ""
"As our project has the ability to achieve ChatGPT performance of over "
"85%, there are certain hardware requirements. However, overall, the "
@ -56,176 +56,176 @@ msgid ""
msgstr "由于我们的项目有能力达到85%以上的ChatGPT性能所以对硬件有一定的要求。但总体来说我们在消费级的显卡上即可完成项目的部署使用具体部署的硬件说明如下:"
#: ../../getting_started/install/deploy/deploy.md
#: 5c5ee902c51d4e44aeeac3fa99910098
#: 3d4530d981bf4dbab815a11c74bfd897
msgid "GPU"
msgstr "GPU"
#: ../../getting_started/install/deploy/deploy.md
#: a3199d1f11474451a06a11503c4e8c74 e3d7c2003b444cb886aec34aaba4acfe
#: 348c8f9b734244258416ea2e11b76caa f2f5e55b8c9b4c7da0ac090e763a9f47
msgid "VRAM Size"
msgstr "显存"
#: ../../getting_started/install/deploy/deploy.md
#: 3bd4ce6f9201483fa579d42ebf8cf556
#: 9e099897409f42339bc284c378318a72
msgid "Performance"
msgstr "Performance"
#: ../../getting_started/install/deploy/deploy.md
#: 8256a27b6a534edea5646589d65eb34e
#: 65bd67a198a84a5399f4799b505e062c
msgid "RTX 4090"
msgstr "RTX 4090"
#: ../../getting_started/install/deploy/deploy.md
#: 25c1f69adc5d4a058dbd28ea4414c3f8 ed85dab6725b4f0baf13ff67a7032777
#: 75e7f58f8f5d42f081a3e4d2e51ccc18 d897e949b37344d084f6917b977bcceb
msgid "24 GB"
msgstr "24 GB"
#: ../../getting_started/install/deploy/deploy.md
#: f57d2a02d8344a3d9870c1c21728249d
#: 9cba72a2be3c41bda797ff447b63e448
msgid "Smooth conversation inference"
msgstr "Smooth conversation inference"
#: ../../getting_started/install/deploy/deploy.md
#: aa1e607b65964d43ad93fc9b3cff7712
#: 90ea71d2099c47acac027773e69d2b23
msgid "RTX 3090"
msgstr "RTX 3090"
#: ../../getting_started/install/deploy/deploy.md
#: c0220f95d58543b498bdf896b2c1a2a1
#: 7dd339251a1a45be9a45e0bb30bd09f7
msgid "Smooth conversation inference, better than V100"
msgstr "Smooth conversation inference, better than V100"
#: ../../getting_started/install/deploy/deploy.md
#: acf0daf6aa764953b43464c8d6688dd8
#: 8abe188052464e6aa395392db834c842
msgid "V100"
msgstr "V100"
#: ../../getting_started/install/deploy/deploy.md
#: 902f8c48bdad47d587acb1990b4d45b7 e53c23b23b414025be52191beb6d33da
#: 0b5263806a19446991cbd59c0fec6ba7 d645833d7e854eab81102374bf3fb7d8
msgid "16 GB"
msgstr "16 GB"
#: ../../getting_started/install/deploy/deploy.md
#: 68f4b835131c4753b1ba690f3b34daea fac3351a3901481c9e0c5204d6790c75
#: 83bb5f40fa7f4e9389ac6abdb6bbb285 f9e58862a0cb488194d7ad536f359f0d
msgid "Conversation inference possible, noticeable stutter"
msgstr "Conversation inference possible, noticeable stutter"
#: ../../getting_started/install/deploy/deploy.md
#: d4b9ff72353b4a10bff0647bf50bfe5c
#: 281f7b3c9a9f450798e5cc7612ea3890
msgid "T4"
msgstr "T4"
#: ../../getting_started/install/deploy/deploy.md:19
#: ddc9544667654f539ca91ac7e8af1268
#: 7276d432615040b3a9eea3f2c5764319
msgid ""
"if your VRAM Size is not enough, DB-GPT supported 8-bit quantization and "
"4-bit quantization."
msgstr "如果你的显存不够DB-GPT支持8-bit和4-bit量化版本"
#: ../../getting_started/install/deploy/deploy.md:21
#: a6ec9822bc754670bbfc1a8a75e71eb2
#: f68d085e03d244ed9b5ccec347466889
msgid ""
"Here are some of the VRAM size usage of the models we tested in some "
"common scenarios."
msgstr "这里是量化版本的相关说明"
#: ../../getting_started/install/deploy/deploy.md
#: b307fe62a5564cadbf3f2d1387165c6b
#: 8d397d7ee603448b97153192e6d3e372
msgid "Model"
msgstr "Model"
#: ../../getting_started/install/deploy/deploy.md
#: 718fb2ff4fcc488aba8963fc6ad5ea8c
#: 4c789597627447278e89462690563faa
msgid "Quantize"
msgstr "Quantize"
#: ../../getting_started/install/deploy/deploy.md
#: 6079a14fca3d43bfbf14021fcd1534c7 785489b458ca4578bfd586c495b5abb9
#: a8d7c76224544ce69f376ac7cb2f5a3b dbf2beb53d7e491393b00848d63d7ffa
msgid "vicuna-7b-v1.5"
msgstr "vicuna-7b-v1.5"
#: ../../getting_started/install/deploy/deploy.md
#: 1d6a5c19584247d89fb2eb98bcaecc83 278d03ee54e749e1b5f20204ddc36149
#: 69c01cb441894f059e91400502cd33ae 7fa7d4922bfb4b3bb44b98ea02ff7e78
#: b8b4566e3a994919b9821cd536504936 d6f4afc865cb40b085b5fc79a09bc7f9
#: ef05aa05a2d2411a91449ccc18a76211
#: 1bd5afee2af84597b5a423308e92362c 46d030b6ff1849ebb22b590e6978d914
#: 4cf8f3ebb0b743ffb2f1c123a25b75d0 6d96be424e6043daa2c02649894aa796
#: 83bb935f520c4c818bfe37e13034b2a7 92ba161085374917b7f82810b1a2bf00
#: ca5ccc49ba1046d2b4b13aaa7ceb62f5
msgid "4-bit"
msgstr "4-bit"
#: ../../getting_started/install/deploy/deploy.md
#: 1266b6e1dde64dab9e6d8bba2f3f6d09 8ab98ed2c80c48ab9e9694131ffcac67
#: b94deb7b80c24ce8a694984511e5a02a
#: 1173b5ee04cb4686ba34a527bc618bdb 558136997f4d49998f2f4e6a9bb656b0
#: 8d203a9a70684cbaa9d937af8450847f
msgid "8 GB"
msgstr "8 GB"
#: ../../getting_started/install/deploy/deploy.md
#: 065f1cf1a1b94ad5803f95f8f019d882 0689708416e14942a76c2808a26bc26e
#: 29dc55e7659a4d6a999a347c346e1327 5f0fa6c729db4cd7ab42dbdc73ca4e40
#: 6401e59dc85541a0b20cb2d2c26e4fd0 9071acd973b24d5582f8d879d5e55931
#: 96f12483ac7447baab6592538cfd567c
#: 033458b772e3493b80041122e067e194 0f3eda083eac4739b2cf7d21337b145e
#: 6404eaa486cf45a69a27b0f87a7f6302 8e850aa3acf14ab2b231be74ddb34e86
#: ba258645f41f47a693aacbbc0f38e981 df67cac599234c4ba667a9b40eb6d9bc
#: fc07aeb321434722a320fed0afe3ffb8
msgid "8-bit"
msgstr "8-bit"
#: ../../getting_started/install/deploy/deploy.md
#: 2d56e3dc1f6a4035a770f7b94c8e0f96 5eebdf37bc544624be5d1b6dabda4716
#: b9fd2505b4644257b91777bc68d5f41e e7056c195656413f92a0c78b5d14219c
#: e7b87586700e4da0aaccff0b4c7c54f7 eb5ad729ae784c7cb8dd52fbb12699ae
#: 3ed2cb5787c14f268c446b03d5531233 68e7f0b0e8ad44ee86a86189bb3b553d
#: 8b4ea703d1df45c5be90d83c4723f16f cb606e0a458746fd86307c1e8aea08f1
#: d5da58dbde3c4bb4ac8b464a0a507c62 e8e140c610ec4971afe1b7ec2690382a
msgid "12 GB"
msgstr "12 GB"
#: ../../getting_started/install/deploy/deploy.md
#: 529ead731c98461b8cb5452c4e72ab23 7cce32961a654ed2a31edc82724e6a1f
#: 512cd29c308c4d3ab66dbe63e7ea8f48 78f8307ab96c4245a1f09abcd714034c
msgid "vicuna-13b-v1.5"
msgstr "vicuna-13b-v1.5"
#: ../../getting_started/install/deploy/deploy.md
#: 0085b850f3574ba6bf3b3654123882dd 69b2df6df91c49b2b26f6749bf6dc657
#: 714e9441566e4c8bbdeaad944e64c699
#: 48849903b3cb4888b6dd3d5efcbb24fb 83178c05f6cf431f82bb1d6d25b2645e
#: 979e3ab64df14753b0987bdd49bd5cc6
msgid "20 GB"
msgstr "20 GB"
#: ../../getting_started/install/deploy/deploy.md
#: 133b65fb88f74645ae5db5cd0009bb35 1e7dedf510e94a47b23eaef61f9687b1
#: 0496046d1fb644c28361959b395231d7 3871c7c4432b4a15a9888586cdc70eda
msgid "llama-2-7b"
msgstr "llama-2-7b"
#: ../../getting_started/install/deploy/deploy.md
#: 0951d03bb6544a2391dcd72eea47c1a7 89f93c8aadc84a0d97d3d89ee55d06bf
#: 0c7c632d7c4d44fabfeed58fcc13db8f 78ee1adc6a7e4fa188706a1d5356059f
msgid "llama-2-13b"
msgstr "llama-2-13b"
#: ../../getting_started/install/deploy/deploy.md
#: 6e5a32858b20441daa4b2584faa46ec4 8bcd62d8cf4f49aebb7d97cd9e015252
#: 15a9341d4a6649908ef88045edd0cb93 d385381b0b4d4eff96a93a9d299cf516
msgid "llama-2-70b"
msgstr "llama-2-70b"
#: ../../getting_started/install/deploy/deploy.md
#: 7f7333221b014cc6857fd9a9e358d85c
#: de37a5c2b02a498b9344b24f626db9dc
msgid "48 GB"
msgstr "48 GB"
#: ../../getting_started/install/deploy/deploy.md
#: 77c24e304e9e4de7b62f99ce29a66a70
#: e897098f81314ce4bf729aee1de7354c
msgid "80 GB"
msgstr "80 GB"
#: ../../getting_started/install/deploy/deploy.md
#: 32c04dc45efb45bcb516640a6d15cce1 e04ad78be6774c32bc53ddd7951cedae
#: 0782883260f840db8e8bf7c10b5ddf62 b03b5c9343454119ae11fcb2dedf9f90
msgid "baichuan-7b"
msgstr "baichuan-7b"
#: ../../getting_started/install/deploy/deploy.md
#: 0fe379939b164e56b0d93113e85fbd98 3400143cf1b94edfbf5da63ed388b08c
#: 008a7d56e8dc4242ae3503bbbf4db153 65ea9ba20adb45519d65da7b16069fa8
msgid "baichuan-13b"
msgstr "baichuan-13b"
#: ../../getting_started/install/deploy/deploy.md:40
#: 7a05f116e0904d0d84d9fc98e5465494
#: 1e434048c4844cc1906d83dd68af6d8c
msgid "2. Install"
msgstr "2. Install"
#: ../../getting_started/install/deploy/deploy.md:45
#: 8f4d6c2b69cb46288f593b6c2aa7701e
#: c6190ea13c024ddcb8e45ea22a235c3b
msgid ""
"We use Sqlite as default database, so there is no need for database "
"installation. If you choose to connect to other databases, you can "
@ -240,12 +240,12 @@ msgstr ""
" Miniconda](https://docs.conda.io/en/latest/miniconda.html)"
#: ../../getting_started/install/deploy/deploy.md:54
#: 3ffaf7fed0c8422b9ceb2ab82d6ddd4d
#: ee1e44044b73460ea8cd2f6c2eb6100d
msgid "Before use DB-GPT Knowledge"
msgstr "在使用知识库之前"
#: ../../getting_started/install/deploy/deploy.md:60
#: 2c2ef86e379d4db18bdfdba6133a0b2f
#: 6a9ff4138c69429bb159bf452fa7ee55
msgid ""
"Once the environment is installed, we have to create a new folder "
"\"models\" in the DB-GPT project, and then we can put all the models "
@ -253,44 +253,56 @@ msgid ""
msgstr "如果你已经安装好了环境需要创建models, 然后到huggingface官网下载模型"
#: ../../getting_started/install/deploy/deploy.md:63
#: 73a766538b3d4cfaa8d7a68b3c9915b8
msgid ""
"Notice make sure you have install git-lfs centos:yum install git-lfs "
"ubuntu:app-get install git-lfs macos:brew install git-lfs"
#: 1299b19bd0f24cc896c59e2c8e7e656c
msgid "Notice make sure you have install git-lfs"
msgstr ""
"注意下载模型之前确保git-lfs已经安ubuntu:app-get install git-lfs macos:brew install "
"git-lfs"
#: ../../getting_started/install/deploy/deploy.md:83
#: 3c26909ece094ecb9f6343d15cca394a
#: ../../getting_started/install/deploy/deploy.md:65
#: 69b3433c8e5c4cbb960e0178bdd6ac97
msgid "centos:yum install git-lfs"
msgstr ""
#: ../../getting_started/install/deploy/deploy.md:67
#: 50e3cfee5fd5484bb063d41693ac75f0
msgid "ubuntu:app-get install git-lfs"
msgstr ""
#: ../../getting_started/install/deploy/deploy.md:69
#: 81c85ca1188b4ef5b94e0431c6309f9b
msgid "macos:brew install git-lfs"
msgstr ""
#: ../../getting_started/install/deploy/deploy.md:86
#: 9b503ea553a24d488e1c180bf30055ff
msgid ""
"The model files are large and will take a long time to download. During "
"the download, let's configure the .env file, which needs to be copied and"
" created from the .env.template"
msgstr "模型文件很大,需要很长时间才能下载。在下载过程中,让我们配置.env文件它需要从。env.template中复制和创建。"
#: ../../getting_started/install/deploy/deploy.md:85
#: efab7120927d4b3f90e591d736b927a3
#: ../../getting_started/install/deploy/deploy.md:88
#: 643b6a27bc0f43ee9451d18d52a9a2eb
msgid ""
"if you want to use openai llm service, see [LLM Use FAQ](https://db-"
"gpt.readthedocs.io/en/latest/getting_started/faq/llm/llm_faq.html)"
msgstr "如果想使用openai大模型服务, 可以参考[LLM Use FAQ](https://db-"
msgstr ""
"如果想使用openai大模型服务, 可以参考[LLM Use FAQ](https://db-"
"gpt.readthedocs.io/en/latest/getting_started/faq/llm/llm_faq.html)"
#: ../../getting_started/install/deploy/deploy.md:88
#: 2009fcaad7c34ebfaa900215650256fc
#: ../../getting_started/install/deploy/deploy.md:91
#: cc869640e66949e99faa17b1098b1306
msgid "cp .env.template .env"
msgstr "cp .env.template .env"
#: ../../getting_started/install/deploy/deploy.md:91
#: ee97ddf25daf45e3bc32b33693af447a
#: ../../getting_started/install/deploy/deploy.md:94
#: 1b94ed0e469f413b8e9d0ff3cdabca33
msgid ""
"You can configure basic parameters in the .env file, for example setting "
"LLM_MODEL to the model to be used"
msgstr "您可以在.env文件中配置基本参数例如将LLM_MODEL设置为要使用的模型。"
#: ../../getting_started/install/deploy/deploy.md:93
#: a86fd88e1d0f4925b8d0dbc27535663b
#: ../../getting_started/install/deploy/deploy.md:96
#: 52cfa3636f2b4f949035d2d54b39a123
msgid ""
"([Vicuna-v1.5](https://huggingface.co/lmsys/vicuna-13b-v1.5) based on "
"llama-2 has been released, we recommend you set `LLM_MODEL=vicuna-"
@ -300,52 +312,23 @@ msgstr ""
"/vicuna-13b-v1.5) "
"目前Vicuna-v1.5模型(基于llama2)已经开源了我们推荐你使用这个模型通过设置LLM_MODEL=vicuna-13b-v1.5"
#: ../../getting_started/install/deploy/deploy.md:95
#: 5395445ea6324e7c9e15485fad084937
#: ../../getting_started/install/deploy/deploy.md:98
#: 491fd44ede1645a3a2db10097c10dbe8
msgid "3. Run"
msgstr "3. Run"
#: ../../getting_started/install/deploy/deploy.md:96
#: cbbc83183f0d49bdb16a3df18adbe8b2
msgid ""
"You can refer to this document to obtain the Vicuna weights: "
"[Vicuna](https://github.com/lm-sys/FastChat/blob/main/README.md#model-"
"weights) ."
msgstr "你可以参考如何获取Vicuna weights文档[Vicuna](https://github.com/lm-sys/FastChat/blob/main/README.md#model-"
"weights) ."
#: ../../getting_started/install/deploy/deploy.md:98
#: e0ffb578c7894520bbb850b257e7773c
msgid ""
"If you have difficulty with this step, you can also directly use the "
"model from [this link](https://huggingface.co/Tribbiani/vicuna-7b) as a "
"replacement."
msgstr "如果觉得模型太大你也可以下载vicuna-7b [this link](https://huggingface.co/Tribbiani/vicuna-7b) "
#: ../../getting_started/install/deploy/deploy.md:103
#: 590c7c07cf5347b4aeee0809185c7f45
#: ../../getting_started/install/deploy/deploy.md:100
#: f66b8a2b18b34df5b3e74674b4a9d7a9
msgid "1.Run db-gpt server"
msgstr "1.Run db-gpt server"
#: ../../getting_started/install/deploy/deploy.md:108
#: cc1f6d2e37464a4291ee7d33d9ebd75f
#: ../../getting_started/install/deploy/deploy.md:105
#: b72283f0ffdc4ecbb4da5239be5fd126
msgid "Open http://localhost:5000 with your browser to see the product."
msgstr "打开浏览器访问http://localhost:5000"
#: ../../getting_started/install/deploy/deploy.md:110
#: 7eef6b17573e4300aa6b693200461f58
msgid ""
"If you want to access an external LLM service, you need to 1.set the "
"variables LLM_MODEL=YOUR_MODEL_NAME "
"MODEL_SERVER=YOUR_MODEL_SERVEReg:http://localhost:5000 in the .env "
"file. 2.execute dbgpt_server.py in light mode"
msgstr ""
"如果你想访问外部的大模型服务(是通过DB-"
"GPT/pilot/server/llmserver.py启动的模型服务)1.需要在.env文件设置模型名和外部模型服务地址。2.使用light模式启动服务"
#: ../../getting_started/install/deploy/deploy.md:113
#: 2fa89081574d4d3a92a4c7d33b090d02
#: ../../getting_started/install/deploy/deploy.md:116
#: 1fae8a8ce4184feba2d74f877a25d8d2
msgid ""
"If you want to learn about dbgpt-webui, read https://github./csunny/DB-"
"GPT/tree/new-page-framework/datacenter"
@ -353,53 +336,55 @@ msgstr ""
"如果你想了解web-ui, 请访问https://github./csunny/DB-GPT/tree/new-page-"
"framework/datacenter"
#: ../../getting_started/install/deploy/deploy.md:120
#: 3b825bc956a0406fb8464e51cfeb769e
msgid "4. Multiple GPUs"
#: ../../getting_started/install/deploy/deploy.md:123
#: 573c0349bd2140e9bb356b53f1da6ee3
#, fuzzy
msgid "Multiple GPUs"
msgstr "4. Multiple GPUs"
#: ../../getting_started/install/deploy/deploy.md:122
#: 568ea5e67ad745858870e66c42ba6833
#: ../../getting_started/install/deploy/deploy.md:125
#: af5d6a12ec954da19576decdf434df5d
msgid ""
"DB-GPT will use all available gpu by default. And you can modify the "
"setting `CUDA_VISIBLE_DEVICES=0,1` in `.env` file to use the specific gpu"
" IDs."
msgstr "DB-GPT默认加载可利用的gpu你也可以通过修改 在`.env`文件 `CUDA_VISIBLE_DEVICES=0,1`来指定gpu IDs"
#: ../../getting_started/install/deploy/deploy.md:124
#: c5b980733d7a4c8d997123ff5524a055
#: ../../getting_started/install/deploy/deploy.md:127
#: de96662007194418a2877cece51dc5cb
msgid ""
"Optionally, you can also specify the gpu ID to use before the starting "
"command, as shown below:"
msgstr "你也可以指定gpu ID启动"
#: ../../getting_started/install/deploy/deploy.md:134
#: 2a5d283a614644d1bb98bbe721aee8e1
#: ../../getting_started/install/deploy/deploy.md:137
#: 9cb0ff253fb2428dbaec97570e5c4fa4
msgid ""
"You can modify the setting `MAX_GPU_MEMORY=xxGib` in `.env` file to "
"configure the maximum memory used by each GPU."
msgstr "同时你可以通过在.env文件设置`MAX_GPU_MEMORY=xxGib`修改每个GPU的最大使用内存"
#: ../../getting_started/install/deploy/deploy.md:136
#: c29c956d3071455bb11694df721e6612
msgid "5. Not Enough Memory"
#: ../../getting_started/install/deploy/deploy.md:139
#: c708ee0a321444dd91be00cda469976c
#, fuzzy
msgid "Not Enough Memory"
msgstr "5. Not Enough Memory"
#: ../../getting_started/install/deploy/deploy.md:138
#: 0174e92fdbfa4af08063c89f6bbe3957
#: ../../getting_started/install/deploy/deploy.md:141
#: 760347ecf9a44d03a8e17cba153a2cc6
msgid "DB-GPT supported 8-bit quantization and 4-bit quantization."
msgstr "DB-GPT 支持 8-bit quantization 和 4-bit quantization."
#: ../../getting_started/install/deploy/deploy.md:140
#: 277f67fa08a541b3bd1fe77cdab39757
#: ../../getting_started/install/deploy/deploy.md:143
#: 32e3dc941bfe4d6587e8be262f8fb4d3
msgid ""
"You can modify the setting `QUANTIZE_8bit=True` or `QUANTIZE_4bit=True` "
"in `.env` file to use quantization(8-bit quantization is enabled by "
"default)."
msgstr "你可以通过在.env文件设置`QUANTIZE_8bit=True` or `QUANTIZE_4bit=True`"
#: ../../getting_started/install/deploy/deploy.md:142
#: 00884fdf7c9a4f8c983ee52bfbb820aa
#: ../../getting_started/install/deploy/deploy.md:145
#: bdc9a3788149427bac9f3cf35578e206
msgid ""
"Llama-2-70b with 8-bit quantization can run with 80 GB of VRAM, and 4-bit"
" quantization can run with 48 GB of VRAM."
@ -407,8 +392,8 @@ msgstr ""
"Llama-2-70b with 8-bit quantization 可以运行在 80 GB VRAM机器 4-bit "
"quantization 可以运行在 48 GB VRAM"
#: ../../getting_started/install/deploy/deploy.md:144
#: a73698444bb4426ca779cc126497a2e0
#: ../../getting_started/install/deploy/deploy.md:147
#: 9b6085c41b5c4b96ac3e917dc5002fc2
msgid ""
"Note: you need to install the latest dependencies according to "
"[requirements.txt](https://github.com/eosphoros-ai/DB-"
@ -417,3 +402,42 @@ msgstr ""
"注意,需要安装[requirements.txt](https://github.com/eosphoros-ai/DB-"
"GPT/blob/main/requirements.txt)涉及的所有的依赖"
#~ msgid ""
#~ "Notice make sure you have install "
#~ "git-lfs centos:yum install git-lfs "
#~ "ubuntu:app-get install git-lfs "
#~ "macos:brew install git-lfs"
#~ msgstr ""
#~ "注意下载模型之前确保git-lfs已经安ubuntu:app-get install "
#~ "git-lfs macos:brew install git-lfs"
#~ msgid ""
#~ "You can refer to this document to"
#~ " obtain the Vicuna weights: "
#~ "[Vicuna](https://github.com/lm-sys/FastChat/blob/main/README.md"
#~ "#model-weights) ."
#~ msgstr ""
#~ "你可以参考如何获取Vicuna weights文档[Vicuna](https://github.com/lm-"
#~ "sys/FastChat/blob/main/README.md#model-weights) ."
#~ msgid ""
#~ "If you have difficulty with this "
#~ "step, you can also directly use "
#~ "the model from [this "
#~ "link](https://huggingface.co/Tribbiani/vicuna-7b) as "
#~ "a replacement."
#~ msgstr ""
#~ "如果觉得模型太大你也可以下载vicuna-7b [this "
#~ "link](https://huggingface.co/Tribbiani/vicuna-7b) "
#~ msgid ""
#~ "If you want to access an external"
#~ " LLM service, you need to 1.set "
#~ "the variables LLM_MODEL=YOUR_MODEL_NAME "
#~ "MODEL_SERVER=YOUR_MODEL_SERVEReg:http://localhost:5000 in "
#~ "the .env file. 2.execute dbgpt_server.py "
#~ "in light mode"
#~ msgstr ""
#~ "如果你想访问外部的大模型服务(是通过DB-"
#~ "GPT/pilot/server/llmserver.py启动的模型服务)1.需要在.env文件设置模型名和外部模型服务地址。2.使用light模式启动服务"

View File

@ -0,0 +1,322 @@
# SOME DESCRIPTIVE TITLE.
# Copyright (C) 2023, csunny
# This file is distributed under the same license as the DB-GPT package.
# FIRST AUTHOR <EMAIL@ADDRESS>, 2023.
#
#, fuzzy
msgid ""
msgstr ""
"Project-Id-Version: DB-GPT 👏👏 0.3.5\n"
"Report-Msgid-Bugs-To: \n"
"POT-Creation-Date: 2023-08-17 21:23+0800\n"
"PO-Revision-Date: YEAR-MO-DA HO:MI+ZONE\n"
"Last-Translator: FULL NAME <EMAIL@ADDRESS>\n"
"Language: zh_CN\n"
"Language-Team: zh_CN <LL@li.org>\n"
"Plural-Forms: nplurals=1; plural=0;\n"
"MIME-Version: 1.0\n"
"Content-Type: text/plain; charset=utf-8\n"
"Content-Transfer-Encoding: 8bit\n"
"Generated-By: Babel 2.12.1\n"
#: ../../getting_started/install/llm/llama/llama_cpp.md:1
#: 911085eb102a47c1832411ada8b8b906
msgid "llama.cpp"
msgstr "llama.cpp"
#: ../../getting_started/install/llm/llama/llama_cpp.md:3
#: 8099fe03f2204c7f90968ae5c0cae117
msgid ""
"DB-GPT is now supported by [llama-cpp-python](https://github.com/abetlen"
"/llama-cpp-python) through "
"[llama.cpp](https://github.com/ggerganov/llama.cpp)."
msgstr "DB-GPT is now supported by [llama-cpp-python](https://github.com/abetlen"
"/llama-cpp-python) through "
"[llama.cpp](https://github.com/ggerganov/llama.cpp)."
#: ../../getting_started/install/llm/llama/llama_cpp.md:5
#: 79c33615ad6d44859b33ed0d05fdb1a5
msgid "Running llama.cpp"
msgstr "运行 llama.cpp"
#: ../../getting_started/install/llm/llama/llama_cpp.md:7
#: 3111bf827639484fb5e5f72a42b1b4e7
msgid "Preparing Model Files"
msgstr "准备模型文件"
#: ../../getting_started/install/llm/llama/llama_cpp.md:9
#: 823f04ec193946d080b203a19c4ed96f
msgid ""
"To use llama.cpp, you need to prepare a ggml format model file, and there"
" are two common ways to obtain it, you can choose either:"
msgstr "使用llama.cpp, 你需要准备ggml格式的文件你可以通过以下两种方法获取"
#: ../../getting_started/install/llm/llama/llama_cpp.md:11
#: c631f3c1a1db429c801c24fa7799b2e1
msgid "Download a pre-converted model file."
msgstr "Download a pre-converted model file."
#: ../../getting_started/install/llm/llama/llama_cpp.md:13
#: 1ac7d5845ca241519ec15236e9802af6
msgid ""
"Suppose you want to use [Vicuna 7B v1.5](https://huggingface.co/lmsys"
"/vicuna-7b-v1.5), you can download the file already converted from "
"[TheBloke/vicuna-7B-v1.5-GGML](https://huggingface.co/TheBloke/vicuna-"
"7B-v1.5-GGML), only one file is needed. Download it to the `models` "
"directory and rename it to `ggml-model-q4_0.bin`."
msgstr "假设您想使用[Vicuna 7B v1.5](https://huggingface.co/lmsys"
"/vicuna-7b-v1.5)您可以从[TheBloke/vicuna-7B-v1.5-GGML](https://huggingface.co/TheBloke/vicuna-"
"7B-v1.5-GGML)下载已转换的文件只需要一个文件。将其下载到models目录并将其重命名为ggml-model-q4_0.bin。"
#: ../../getting_started/install/llm/llama/llama_cpp.md:19
#: 65344fafdaa1469797592e454ebee7b5
msgid "Convert It Yourself"
msgstr "Convert It Yourself"
#: ../../getting_started/install/llm/llama/llama_cpp.md:21
#: 8da2bda172884c9fb2d64901d8b9178c
msgid ""
"You can convert the model file yourself according to the instructions in "
"[llama.cpp#prepare-data--run](https://github.com/ggerganov/llama.cpp"
"#prepare-data--run), and put the converted file in the models directory "
"and rename it to `ggml-model-q4_0.bin`."
msgstr "您可以根据[llama.cpp#prepare-data--run](https://github.com/ggerganov/llama.cpp"
"#prepare-data--run)中的说明自己转换模型文件然后将转换后的文件放入models目录中并将其重命名为ggml-model-q4_0.bin。"
#: ../../getting_started/install/llm/llama/llama_cpp.md:23
#: d30986c0a84448ff89bc4bb84e3d0deb
msgid "Installing Dependencies"
msgstr "安装依赖"
#: ../../getting_started/install/llm/llama/llama_cpp.md:25
#: b91ca009587b45679c54f4dce07c2eb3
msgid ""
"llama.cpp is an optional dependency in DB-GPT, and you can manually "
"install it using the following command:"
msgstr "llama.cpp在DB-GPT中是可选安装项, 你可以通过一下命令进行安装"
#: ../../getting_started/install/llm/llama/llama_cpp.md:31
#: 2c89087ba2214d97bc01a286826042bc
msgid "Modifying the Configuration File"
msgstr "修改配置文件"
#: ../../getting_started/install/llm/llama/llama_cpp.md:33
#: e4ebd4dac0cd4fb4a8e3c1f6edde7ea8
msgid "Next, you can directly modify your `.env` file to enable llama.cpp."
msgstr "修改`.env`文件使用llama.cpp"
#: ../../getting_started/install/llm/llama/llama_cpp.md:40
#: 2fce7ec613784c8e96f19e9f4c4fb818
msgid ""
"Then you can run it according to [Run](https://db-"
"gpt.readthedocs.io/en/latest/getting_started/install/deploy/deploy.html#run)."
msgstr "然后你可以通过[Run](https://db-"
"gpt.readthedocs.io/en/latest/getting_started/install/deploy/deploy.html#run).来运行"
#: ../../getting_started/install/llm/llama/llama_cpp.md:43
#: 9bbaa16512d2420aa368ba34825cc024
msgid "More Configurations"
msgstr "更多配置文件"
#: ../../getting_started/install/llm/llama/llama_cpp.md:45
#: 5ce014aa175d4a119150cf184098a0c3
msgid ""
"In DB-GPT, the model configuration can be done through `{model "
"name}_{config key}`."
msgstr "In DB-GPT, the model configuration can be done through `{model "
"name}_{config key}`."
#: ../../getting_started/install/llm/llama/llama_cpp.md
#: 09d1f9eaf6cc4267b1eb94e4a8e78ba9
msgid "Environment Variable Key"
msgstr "Environment Variable Key"
#: ../../getting_started/install/llm/llama/llama_cpp.md
#: 6650b3f2495e41588e23d8a2647e7ce3
msgid "default"
msgstr "default"
#: ../../getting_started/install/llm/llama/llama_cpp.md
#: 8f33e692a7fc41e1a42663535b95a08c
msgid "Prompt Template Name"
msgstr "Prompt Template Name"
#: ../../getting_started/install/llm/llama/llama_cpp.md
#: 2f8ca1f267694949a2b251d0ef576fd8
msgid "llama_cpp_prompt_template"
msgstr "llama_cpp_prompt_template"
#: ../../getting_started/install/llm/llama/llama_cpp.md
#: 9b6d310d3f3c454488f76062c8bcda67 c80abec11c3240cf9d0122543e9401c3
#: ed439c9374d74543a8d2a4f88f4db958 f49b3e4281b14f1b8909cd13159d406a
#: ffa824cc22a946ab851124b58cf7441a
msgid "None"
msgstr "None"
#: ../../getting_started/install/llm/llama/llama_cpp.md
#: f41bd292bcb9491096c39b36bceb3816
msgid ""
"Prompt template name, now support: `zero_shot, vicuna_v1.1, llama-2"
",baichuan-chat`, If None, the prompt template is automatically determined"
" from model path。"
msgstr "Prompt template 现在可以支持`zero_shot, vicuna_v1.1, llama-2"
",baichuan-chat`, 如果是None, the prompt template可以自动选择模型路径"
#: ../../getting_started/install/llm/llama/llama_cpp.md
#: 8125df74f1a7429eb0c5ce350edc9315
msgid "llama_cpp_model_path"
msgstr "llama_cpp_model_path"
#: ../../getting_started/install/llm/llama/llama_cpp.md
#: 28ad71d410fb4757821bf8cc1c232357
msgid "Model path"
msgstr "Model path"
#: ../../getting_started/install/llm/llama/llama_cpp.md
#: b7133f115d79477ab416dc63c64d8aa7
msgid "llama_cpp_n_gpu_layers"
msgstr "llama_cpp_n_gpu_layers"
#: ../../getting_started/install/llm/llama/llama_cpp.md
#: 7cdd27333a464ebeab6bf41bca709816
msgid "1000000000"
msgstr "1000000000"
#: ../../getting_started/install/llm/llama/llama_cpp.md
#: 667ec37bc6824eba999f39f4e6072999
msgid "Number of layers to offload to the GPU, Set this to 1000000000 to offload"
" all layers to the GPU. If your GPU VRAM is not enough, you can set a low"
" number, eg: `10`"
msgstr "要将层数转移到GPU上将其设置为1000000000以将所有层转移到GPU上。如果您的GPU VRAM不足可以设置较低的数字例如10。"
#: ../../getting_started/install/llm/llama/llama_cpp.md
#: edae6c77475d4958a96d59b4bd165916
msgid "llama_cpp_n_threads"
msgstr "llama_cpp_n_threads"
#: ../../getting_started/install/llm/llama/llama_cpp.md
#: 8fef1cdd4b0b42faadc717a58b9434a4
msgid ""
"Number of threads to use. If None, the number of threads is automatically"
" determined"
msgstr "要使用的线程数量。如果为None则线程数量将自动确定。"
#: ../../getting_started/install/llm/llama/llama_cpp.md
#: ef5f27f600aa4eaf8080d6dca46ad434
msgid "llama_cpp_n_batch"
msgstr "llama_cpp_n_batch"
#: ../../getting_started/install/llm/llama/llama_cpp.md
#: be999101e5f84b83bde0d8e801083c52
msgid "512"
msgstr "512"
#: ../../getting_started/install/llm/llama/llama_cpp.md
#: cdc7a51c720a4fe38323eb7a1cfa6bd1
msgid "Maximum number of prompt tokens to batch together when calling llama_eval"
msgstr "在调用llama_eval时批处理在一起的prompt tokens的最大数量。
"
#: ../../getting_started/install/llm/llama/llama_cpp.md
#: 26d08360c2df4d018b2416cf8e4b3f48
msgid "llama_cpp_n_gqa"
msgstr "llama_cpp_n_gqa"
#: ../../getting_started/install/llm/llama/llama_cpp.md
#: 4d22c4f8e285445f9c26d181cf350cb7
msgid "Grouped-query attention. Must be 8 for llama-2 70b."
msgstr "对于llama-2 70b模型Grouped-query attention必须为8。"
#: ../../getting_started/install/llm/llama/llama_cpp.md
#: 18e5e5ba6ac64e818546742458fb4c84
msgid "llama_cpp_rms_norm_eps"
msgstr "llama_cpp_rms_norm_eps"
#: ../../getting_started/install/llm/llama/llama_cpp.md
#: fc85743d71e1428fa2aa0423ff9d9170
msgid "5e-06"
msgstr "5e-06"
#: ../../getting_started/install/llm/llama/llama_cpp.md
#: bfc53bec0df94d9e8e9cc7d3333a69c1
msgid "5e-6 is a good value for llama-2 models."
msgstr "对于llama-2模型来说5e-6是一个不错的值。"
#: ../../getting_started/install/llm/llama/llama_cpp.md
#: 81fc8f37787d48b0b1da826a2f887886
msgid "llama_cpp_cache_capacity"
msgstr "llama_cpp_cache_capacity"
#: ../../getting_started/install/llm/llama/llama_cpp.md
#: 125e3285249449cb90bbff063868d4d4
msgid "Maximum cache capacity. Examples: 2000MiB, 2GiB"
msgstr "cache capacity最大值. Examples: 2000MiB, 2GiB"
#: ../../getting_started/install/llm/llama/llama_cpp.md
#: 31ed49d49f574d4983738d91bed95fc9
msgid "llama_cpp_prefer_cpu"
msgstr "llama_cpp_prefer_cpu"
#: ../../getting_started/install/llm/llama/llama_cpp.md
#: b6ed0d5394874bb38c7468216b8bca88
msgid "False"
msgstr "False"
#: ../../getting_started/install/llm/llama/llama_cpp.md
#: d148d6b130454666a601b65b444c7e51
msgid ""
"If a GPU is available, it will be preferred by default, unless "
"prefer_cpu=False is configured."
msgstr "如果有可用的GPU默认情况下会优先使用GPU除非配置了prefer_cpu=False。"
#: ../../getting_started/install/llm/llama/llama_cpp.md:59
#: 75bd31d245b148569bcf9eca6c8bec9c
msgid "GPU Acceleration"
msgstr "GPU 加速"
#: ../../getting_started/install/llm/llama/llama_cpp.md:61
#: 1cf5538f9d39457e901f4120f76d54c1
msgid ""
"GPU acceleration is supported by default. If you encounter any issues, "
"you can uninstall the dependent packages with the following command:"
msgstr "默认情况下支持GPU加速。如果遇到任何问题您可以使用以下命令卸载相关的依赖包"
#: ../../getting_started/install/llm/llama/llama_cpp.md:66
#: 08f8eea38e5e44fa80b528b75a379acf
msgid ""
"Then install `llama-cpp-python` according to the instructions in [llama-"
"cpp-python](https://github.com/abetlen/llama-cpp-"
"python/blob/main/README.md)."
msgstr "然后通过指令[llama-"
"cpp-python](https://github.com/abetlen/llama-cpp-"
"python/blob/main/README.md).安装`llama-cpp-python`"
#: ../../getting_started/install/llm/llama/llama_cpp.md:69
#: abea5d4418c54657981640d6227b7be2
msgid "Mac Usage"
msgstr "Mac Usage"
#: ../../getting_started/install/llm/llama/llama_cpp.md:71
#: be9fb5ecbdd5495b98007decccbd0372
msgid ""
"Special attention, if you are using Apple Silicon (M1) Mac, it is highly "
"recommended to install arm64 architecture python support, for example:"
msgstr "特别注意如果您正在使用苹果芯片M1的Mac电脑强烈建议安装arm64架构的Python支持例如"
#: ../../getting_started/install/llm/llama/llama_cpp.md:78
#: efd6dfd4e9e24bf884803143e2b123f2
msgid "Windows Usage"
msgstr "Windows使用"
#: ../../getting_started/install/llm/llama/llama_cpp.md:80
#: 27ecf054aa294a2eaed701c46edf27a7
msgid ""
"The use under the Windows platform has not been rigorously tested and "
"verified, and you are welcome to use it. If you have any problems, you "
"can create an [issue](https://github.com/eosphoros-ai/DB-GPT/issues) or "
"[contact us](https://github.com/eosphoros-ai/DB-GPT/tree/main#contact-"
"information) directly."
msgstr "在Windows平台上的使用尚未经过严格的测试和验证欢迎您使用。如果您有任何问题可以创建一个[issue](https://github.com/eosphoros-ai/DB-GPT/issues)或者[contact us](https://github.com/eosphoros-ai/DB-GPT/tree/main#contact-"
"information) directly."

View File

@ -37,7 +37,7 @@ LLM_MODEL_CONFIG = {
"vicuna-13b-v1.5": os.path.join(MODEL_PATH, "vicuna-13b-v1.5"),
"vicuna-7b-v1.5": os.path.join(MODEL_PATH, "vicuna-7b-v1.5"),
"text2vec": os.path.join(MODEL_PATH, "text2vec-large-chinese"),
#https://huggingface.co/moka-ai/m3e-large
# https://huggingface.co/moka-ai/m3e-large
"m3e-base": os.path.join(MODEL_PATH, "m3e-base"),
# https://huggingface.co/moka-ai/m3e-base
"m3e-large": os.path.join(MODEL_PATH, "m3e-large"),