docs: update english docs

docs: update readme
This commit is contained in:
xudafeng 2023-05-14 23:02:32 +08:00
parent 2127035a00
commit 2fcd9067c7
11 changed files with 80 additions and 64 deletions

View File

@ -2,96 +2,105 @@
---
[中文版](README.md)
A Open Database-GPT Experiment, interact your data and environment using the local GPT, no data leaks, 100% privately, 100% security.
![GitHub Repo stars](https://img.shields.io/github/stars/csunny/db-gpt?style=social)
## Features
一个数据库相关的GPT实验项目, 模型与数据全部本地化部署, 绝对保障数据的隐私安全。 同时此GPT项目可以直接本地部署连接到私有数据库, 进行私有数据处理。
- SQL Project
- SQL Generate
- SQL-diagnosis
- Database-QA Based Knowledge
[DB-GPT](https://github.com/csunny/DB-GPT) 是一个实验性的开源应用,它基于[FastChat](https://github.com/lm-sys/FastChat),并使用[vicuna-13b](https://huggingface.co/Tribbiani/vicuna-13b)作为基础模型。此外,此程序结合了[langchain](https://github.com/hwchase17/langchain)和[llama-index](https://github.com/jerryjliu/llama_index)基于现有知识库进行[In-Context Learning](https://arxiv.org/abs/2301.00234)来对其进行数据库相关知识的增强。它可以进行SQL生成、SQL诊断、数据库知识问答、数据处理等一系列的工作。
## Architecture Design
## 项目方案
<img src="https://github.com/csunny/DB-GPT/blob/main/asserts/DB-GPT.png" width="600" margin-left="auto" margin-right="auto" >
<p align="center">
<img src="./assets/DB-GPT.png" width="600px" />
</p>
[DB-GPT](https://github.com/csunny/DB-GPT) is an experimental open-source application that builds upon the [FastChat](https://github.com/lm-sys/FastChat) model and uses vicuna as its base model. Additionally, it looks like this application incorporates langchain and llama-index embedding knowledge to improve Database-QA capabilities.
Overall, it appears to be a sophisticated and innovative tool for working with databases. If you have any specific questions about how to use or implement DB-GPT in your work, please let me know and I'll do my best to assist you.
## Demo
## 运行效果演示
Run on an RTX 4090 GPU (The origin mov not sped up!, [YouTube地址](https://www.youtube.com/watch?v=1PWI6F89LPo))
- 运行演示
![](https://github.com/csunny/DB-GPT/blob/main/asserts/演示.gif)
### Run
<p align="center">
<img src="./assets/演示.gif" width="600px" />
</p>
- SQL生成示例
首先选择对应的数据库, 然后模型即可根据对应的数据库Schema信息生成SQL
### SQL Generate
<img src="https://github.com/csunny/DB-GPT/blob/main/asserts/SQLGEN.png" width="600" margin-left="auto" margin-right="auto" >
First, select the DataBase, you can use Schema to generate the SQL.。
The Generated SQL is runable.
<p align="center">
<img src="./assets/SQLGEN.png" width="600px" />
</p>
<img src="https://github.com/csunny/DB-GPT/blob/main/asserts/exeable.png" width="600" margin-left="auto" margin-right="auto" >
<p align="center">
<img src="./assets/exeable.png" width="600px" />
</p>
- 数据库QA示例
### Database-QA
<img src="https://github.com/csunny/DB-GPT/blob/main/asserts/DB_QA.png" margin-left="auto" margin-right="auto" width="600">
<p align="center">
<img src="./assets/DB_QA.png" width="600px" />
</p>
基于默认内置知识库QA
<p align="center">
<img src="./assets/VectorDBQA.png" width="600px" />
</p>
<img src="https://github.com/csunny/DB-GPT/blob/main/asserts/VectorDBQA.png" width="600" margin-left="auto" margin-right="auto" >
## Deployment
# Dependencies
1. First you need to install python requirements.
```
python>=3.9
pip install -r requirements.txt
### 1. Python Requirement
```bash
$ python>=3.9
$ pip install -r requirements.txt
```
or if you use conda envirenment, you can use this command
```
cd DB-GPT
conda env create -f environment.yml
```bash
$ conda env create -f environment.yml
```
2. MySQL Install
### 2. MySQL
In this project examples, we connect mysql and run SQL-Generate. so you need install mysql local for test. recommand docker
```
docker run --name=mysql -p 3306:3306 -e MYSQL_ROOT_PASSWORD=aa12345678 -dit mysql:latest
```
The password just for test, you can change this if necessary
# Install
1. 基础模型下载
关于基础模型, 可以根据[vicuna](https://github.com/lm-sys/FastChat/blob/main/README.md#model-weights)合成教程进行合成。
如果此步有困难的同学,也可以直接使用[Hugging Face](https://huggingface.co/)上的模型进行替代. [替代模型](https://huggingface.co/Tribbiani/vicuna-7b)
2. Run model server
```
cd pilot/server
python vicuna_server.py
```bash
$ docker run --name=mysql -p 3306:3306 -e MYSQL_ROOT_PASSWORD=aa12345678 -dit mysql:latest
```
3. Run gradio webui
```
python webserver.py
### 3. LLM
- [vicuna](https://github.com/lm-sys/FastChat/blob/main/README.md#model-weights)
- [Hugging Face](https://huggingface.co/Tribbiani/vicuna-7b)
```bash
$ cd pilot/server
$ python vicuna_server.py
```
4. 基于阿里云部署指南
[阿里云部署指南](https://open.oceanbase.com/blog/3278046208)
Run gradio webui
# Featurs
- SQL-Generate
- Database-QA Based Knowledge
- SQL-diagnosis
```bash
$ python webserver.py
```
总的来说它是一个用于数据库的复杂且创新的AI工具。如果您对如何在工作中使用或实施DB-GPT有任何具体问题请联系我, 我会尽力提供帮助, 同时也欢迎大家参与到项目建设中, 做一些有趣的事情。
## Thanks
<img src="https://github.com/csunny/DB-GPT/blob/main/asserts/wechat.jpg" width="400" margin-left="auto" margin-right="auto" >
- [FastChat](https://github.com/lm-sys/FastChat)
- [vicuna-13b](https://huggingface.co/Tribbiani/vicuna-13b)
- [langchain](https://github.com/hwchase17/langchain)
- [llama-index](https://github.com/jerryjliu/llama_index) and [In-Context Learning](https://arxiv.org/abs/2301.00234)
# Contribute
[Contribute](https://github.com/csunny/DB-GPT/blob/main/CONTRIBUTING)
# Licence
[MIT](https://github.com/csunny/DB-GPT/blob/main/LICENSE)
## Licence
The MIT License (MIT)

View File

@ -18,7 +18,7 @@
## 架构方案
<p align="center">
<img src="./asserts/DB-GPT.png" width="740px" />
<img src="./assets/DB-GPT.png" width="600px" />
</p>
DB-GPT 基于[FastChat](https://github.com/lm-sys/FastChat) 构建大模型运行环境,并提供 vicuna 作为基础的大语言模型。此外,我们通过 langchain 和 llama-index 提供私域知识库问答能力。
@ -29,7 +29,7 @@ DB-GPT 基于[FastChat](https://github.com/lm-sys/FastChat) 构建大模型运
### 运行环境演示
<p align="center">
<img src="./asserts/演示.gif" width="680px" />
<img src="./assets/演示.gif" width="600px" />
</p>
### SQL 生成
@ -37,30 +37,30 @@ DB-GPT 基于[FastChat](https://github.com/lm-sys/FastChat) 构建大模型运
首先选择对应的数据库, 然后模型即可根据对应的数据库 Schema 信息生成 SQL。
<p align="center">
<img src="./asserts/SQLGEN.png" width="680px" />
<img src="./assets/SQLGEN.png" width="600px" />
</p>
运行成功的效果如下面的演示:
<p align="center">
<img src="./asserts/exeable.png" width="680px" />
<img src="./assets/exeable.png" width="600px" />
</p>
### 数据库问答
<p align="center">
<img src="./asserts/DB_QA.png" width="680px" />
<img src="./assets/DB_QA.png" width="600px" />
</p>
基于默认内置知识库。
<p align="center">
<img src="./asserts/VectorDBQA.png" width="680px" />
<img src="./assets/VectorDBQA.png" width="600px" />
</p>
## 部署
### 1. 安装 Python 依赖的模块。
### 1. 安装 Python
```bash
$ python>=3.9
@ -109,16 +109,23 @@ $ python webserver.py
- [llama-index](https://github.com/jerryjliu/llama_index) 基于现有知识库进行[In-Context Learning](https://arxiv.org/abs/2301.00234)来对其进行数据库相关知识的增强。
<!-- GITCONTRIBUTOR_START -->
## Contributors
|[<img src="https://avatars.githubusercontent.com/u/17919400?v=4" width="100px;"/><br/><sub><b>csunny</b></sub>](https://github.com/csunny)<br/>|
|[<img src="https://avatars.githubusercontent.com/u/17919400?v=4" width="100px;"/><br/><sub><b>csunny</b></sub>](https://github.com/csunny)<br/>|[<img src="https://avatars.githubusercontent.com/u/1011681?v=4" width="100px;"/><br/><sub><b>xudafeng</b></sub>](https://github.com/xudafeng)<br/>|
| :---: | :---: |
This project follows the git-contributor [spec](https://github.com/xudafeng/git-contributor), auto updated at `Sun May 14 2023 22:37:46 GMT+0800`.
This project follows the git-contributor [spec](https://github.com/xudafeng/git-contributor), auto updated at `Sun May 14 2023 23:02:43 GMT+0800`.
<!-- GITCONTRIBUTOR_END -->
这是一个用于数据库的复杂且创新的工具,如有任何具体问题,请联系如下微信,我会尽力提供帮助,同时也欢迎参与到项目建设中。
<p align="center">
<img src="./assets/wechat.jpg" width="320px" />
</p>
## Licence
The MIT License (MIT)

Binary file not shown.

Before

Width:  |  Height:  |  Size: 84 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 243 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 297 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 560 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 277 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 78 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 164 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 323 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 3.0 MiB