mirror of
https://github.com/csunny/DB-GPT.git
synced 2025-09-11 22:09:44 +00:00
doc:update knowledge api document
This commit is contained in:
@@ -25,14 +25,14 @@ $ docker run --name=mysql -p 3306:3306 -e MYSQL_ROOT_PASSWORD=aa12345678 -dit my
|
||||
We use [Chroma embedding database](https://github.com/chroma-core/chroma) as the default for our vector database, so there is no need for special installation. If you choose to connect to other databases, you can follow our tutorial for installation and configuration.
|
||||
For the entire installation process of DB-GPT, we use the miniconda3 virtual environment. Create a virtual environment and install the Python dependencies.
|
||||
|
||||
```
|
||||
```{tip}
|
||||
python>=3.10
|
||||
conda create -n dbgpt_env python=3.10
|
||||
conda activate dbgpt_env
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
Before use DB-GPT Knowledge Management
|
||||
```
|
||||
```{tip}
|
||||
python -m spacy download zh_core_web_sm
|
||||
|
||||
```
|
||||
@@ -40,7 +40,7 @@ python -m spacy download zh_core_web_sm
|
||||
Once the environment is installed, we have to create a new folder "models" in the DB-GPT project, and then we can put all the models downloaded from huggingface in this directory
|
||||
|
||||
Notice make sure you have install git-lfs
|
||||
```
|
||||
```{tip}
|
||||
git clone https://huggingface.co/Tribbiani/vicuna-13b
|
||||
git clone https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
|
||||
git clone https://huggingface.co/GanymedeNil/text2vec-large-chinese
|
||||
@@ -49,7 +49,7 @@ git clone https://huggingface.co/THUDM/chatglm2-6b
|
||||
|
||||
The model files are large and will take a long time to download. During the download, let's configure the .env file, which needs to be copied and created from the .env.template
|
||||
|
||||
```
|
||||
```{tip}
|
||||
cp .env.template .env
|
||||
```
|
||||
|
||||
|
29
docs/getting_started/installation.md
Normal file
29
docs/getting_started/installation.md
Normal file
@@ -0,0 +1,29 @@
|
||||
# Installation
|
||||
DB-GPT provides a third-party Python API package that you can integrate into your own code.
|
||||
|
||||
### Installation from Pip
|
||||
|
||||
You can simply pip install:
|
||||
```{tip}
|
||||
pip install -i https://pypi.org/ db-gpt==0.3.0
|
||||
```
|
||||
Notice:make sure python>=3.10
|
||||
|
||||
|
||||
### Environment Setup
|
||||
|
||||
By default, if you use the EmbeddingEngine api
|
||||
|
||||
you will prepare embedding models from huggingface
|
||||
|
||||
Notice make sure you have install git-lfs
|
||||
```{tip}
|
||||
git clone https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
|
||||
git clone https://huggingface.co/GanymedeNil/text2vec-large-chinese
|
||||
```
|
||||
version:
|
||||
- db-gpt0.3.0
|
||||
- [embedding_engine api](https://db-gpt.readthedocs.io/en/latest/modules/knowledge.html)
|
||||
- [multi source embedding](https://db-gpt.readthedocs.io/en/latest/modules/knowledge/pdf/pdf_embedding.html)
|
||||
- [vector connector](https://db-gpt.readthedocs.io/en/latest/modules/vector.html)
|
||||
|
Reference in New Issue
Block a user