Merge pull request #13 from csunny/dev

qa based knowledge
This commit is contained in:
magic.chen 2023-05-06 00:43:15 +08:00 committed by GitHub
commit 3db8e33f20
8 changed files with 138 additions and 49 deletions

View File

@ -40,8 +40,8 @@ def get_answer(q):
return response.response
def get_similar(q):
from pilot.vector_store.extract_tovec import knownledge_tovec
docsearch = knownledge_tovec("./datasets/plan.md")
from pilot.vector_store.extract_tovec import knownledge_tovec, load_knownledge_from_doc
docsearch = load_knownledge_from_doc()
docs = docsearch.similarity_search_with_score(q, k=1)
for doc in docs:

View File

@ -4,34 +4,34 @@
import torch
import os
root_path = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
model_path = os.path.join(root_path, "models")
vector_storepath = os.path.join(root_path, "vector_store")
LOGDIR = os.path.join(root_path, "logs")
ROOT_PATH = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
MODEL_PATH = os.path.join(ROOT_PATH, "models")
VECTORE_PATH = os.path.join(ROOT_PATH, "vector_store")
LOGDIR = os.path.join(ROOT_PATH, "logs")
DATASETS_DIR = os.path.join(ROOT_PATH, "pilot/datasets")
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
llm_model_config = {
"flan-t5-base": os.path.join(model_path, "flan-t5-base"),
"vicuna-13b": os.path.join(model_path, "vicuna-13b"),
"sentence-transforms": os.path.join(model_path, "all-MiniLM-L6-v2")
LLM_MODEL_CONFIG = {
"flan-t5-base": os.path.join(MODEL_PATH, "flan-t5-base"),
"vicuna-13b": os.path.join(MODEL_PATH, "vicuna-13b"),
"sentence-transforms": os.path.join(MODEL_PATH, "all-MiniLM-L6-v2")
}
LLM_MODEL = "vicuna-13b"
LIMIT_MODEL_CONCURRENCY = 5
MAX_POSITION_EMBEDDINGS = 2048
vicuna_model_server = "http://192.168.31.114:8000"
VICUNA_MODEL_SERVER = "http://192.168.31.114:8000"
# Load model config
isload_8bit = True
isdebug = False
ISLOAD_8BIT = True
ISDEBUG = False
DB_SETTINGS = {
"user": "root",
"password": "********",
"password": "aa123456",
"host": "localhost",
"port": 3306
}

View File

@ -8,7 +8,7 @@ from langchain.embeddings.base import Embeddings
from pydantic import BaseModel
from typing import Any, Mapping, Optional, List
from langchain.llms.base import LLM
from configs.model_config import *
from pilot.configs.model_config import *
class VicunaRequestLLM(LLM):
@ -25,7 +25,7 @@ class VicunaRequestLLM(LLM):
"stop": stop
}
response = requests.post(
url=urljoin(vicuna_model_server, self.vicuna_generate_path),
url=urljoin(VICUNA_MODEL_SERVER, self.vicuna_generate_path),
data=json.dumps(params),
)
response.raise_for_status()
@ -55,7 +55,7 @@ class VicunaEmbeddingLLM(BaseModel, Embeddings):
print("Sending prompt ", p)
response = requests.post(
url=urljoin(vicuna_model_server, self.vicuna_embedding_path),
url=urljoin(VICUNA_MODEL_SERVER, self.vicuna_embedding_path),
json={
"prompt": p
}

View File

@ -14,7 +14,7 @@ from fastchat.serve.inference import load_model
from pilot.model.loader import ModerLoader
from pilot.configs.model_config import *
model_path = llm_model_config[LLM_MODEL]
model_path = LLM_MODEL_CONFIG[LLM_MODEL]
global_counter = 0

View File

@ -12,9 +12,9 @@ import requests
from urllib.parse import urljoin
from pilot.configs.model_config import DB_SETTINGS
from pilot.connections.mysql_conn import MySQLOperator
from pilot.vector_store.extract_tovec import get_vector_storelist, load_knownledge_from_doc, knownledge_tovec_st
from pilot.configs.model_config import LOGDIR, vicuna_model_server, LLM_MODEL
from pilot.configs.model_config import LOGDIR, VICUNA_MODEL_SERVER, LLM_MODEL, DATASETS_DIR
from pilot.conversation import (
default_conversation,
@ -42,11 +42,22 @@ disable_btn = gr.Button.update(interactive=True)
enable_moderation = False
models = []
dbs = []
vs_list = ["新建知识库"] + get_vector_storelist()
priority = {
"vicuna-13b": "aaa"
}
def get_simlar(q):
docsearch = knownledge_tovec_st(os.path.join(DATASETS_DIR, "plan.md"))
docs = docsearch.similarity_search_with_score(q, k=1)
contents = [dc.page_content for dc, _ in docs]
return "\n".join(contents)
def gen_sqlgen_conversation(dbname):
mo = MySQLOperator(
**DB_SETTINGS
@ -149,6 +160,7 @@ def http_bot(state, db_selector, temperature, max_new_tokens, request: gr.Reques
yield (state, state.to_gradio_chatbot()) + (no_change_btn,) * 5
return
query = state.messages[-2][1]
if len(state.messages) == state.offset + 2:
# 第一轮对话需要加入提示Prompt
@ -157,11 +169,23 @@ def http_bot(state, db_selector, temperature, max_new_tokens, request: gr.Reques
new_state.conv_id = uuid.uuid4().hex
# prompt 中添加上下文提示
new_state.append_message(new_state.roles[0], gen_sqlgen_conversation(dbname) + state.messages[-2][1])
new_state.append_message(new_state.roles[1], None)
state = new_state
if db_selector:
new_state.append_message(new_state.roles[0], gen_sqlgen_conversation(dbname) + query)
new_state.append_message(new_state.roles[1], None)
state = new_state
else:
new_state.append_message(new_state.roles[0], query)
new_state.append_message(new_state.roles[1], None)
state = new_state
try:
if not db_selector:
sim_q = get_simlar(query)
print("********vector similar info*************: ", sim_q)
state.append_message(new_state.roles[0], sim_q + query)
except Exception as e:
print(e)
prompt = state.get_prompt()
skip_echo_len = len(prompt.replace("</s>", " ")) + 1
@ -181,7 +205,7 @@ def http_bot(state, db_selector, temperature, max_new_tokens, request: gr.Reques
try:
# Stream output
response = requests.post(urljoin(vicuna_model_server, "generate_stream"),
response = requests.post(urljoin(VICUNA_MODEL_SERVER, "generate_stream"),
headers=headers, json=payload, stream=True, timeout=20)
for chunk in response.iter_lines(decode_unicode=False, delimiter=b"\0"):
if chunk:
@ -236,6 +260,15 @@ pre {
"""
)
def change_tab(tab):
pass
def change_mode(mode):
if mode == "默认知识库对话":
return gr.update(visible=False)
else:
return gr.update(visible=True)
def build_single_model_ui():
@ -270,12 +303,10 @@ def build_single_model_ui():
interactive=True,
label="最大输出Token数",
)
with gr.Tabs():
with gr.TabItem("知识问答", elem_id="QA"):
pass
tabs = gr.Tabs()
with tabs:
with gr.TabItem("SQL生成与诊断", elem_id="SQL"):
# TODO A selector to choose database
# TODO A selector to choose database
with gr.Row(elem_id="db_selector"):
db_selector = gr.Dropdown(
label="请选择数据库",
@ -283,6 +314,30 @@ def build_single_model_ui():
value=dbs[0] if len(models) > 0 else "",
interactive=True,
show_label=True).style(container=False)
with gr.TabItem("知识问答", elem_id="QA"):
mode = gr.Radio(["默认知识库对话", "新增知识库"], show_label=False, value="默认知识库对话")
vs_setting = gr.Accordion("配置知识库", open=False)
mode.change(fn=change_mode, inputs=mode, outputs=vs_setting)
with vs_setting:
vs_name = gr.Textbox(label="新知识库名称", lines=1, interactive=True)
vs_add = gr.Button("添加为新知识库")
with gr.Column() as doc2vec:
gr.Markdown("向知识库中添加文件")
with gr.Tab("上传文件"):
files = gr.File(label="添加文件",
file_types=[".txt", ".md", ".docx", ".pdf"],
file_count="multiple",
show_label=False
)
load_file_button = gr.Button("上传并加载到知识库")
with gr.Tab("上传文件夹"):
folder_files = gr.File(label="添加文件",
file_count="directory",
show_label=False)
load_folder_button = gr.Button("上传并加载到知识库")
with gr.Blocks():
chatbot = grChatbot(elem_id="chatbot", visible=False).style(height=550)
@ -300,6 +355,7 @@ def build_single_model_ui():
regenerate_btn = gr.Button(value="重新生成", interactive=False)
clear_btn = gr.Button(value="清理", interactive=False)
gr.Markdown(learn_more_markdown)
btn_list = [regenerate_btn, clear_btn]

View File

@ -1,19 +1,20 @@
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
import os
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import Chroma
from pilot.model.vicuna_llm import VicunaEmbeddingLLM
# from langchain.embeddings import SentenceTransformerEmbeddings
from pilot.configs.model_config import VECTORE_PATH, DATASETS_DIR
from langchain.embeddings import HuggingFaceEmbeddings
embeddings = VicunaEmbeddingLLM()
def knownledge_tovec(filename):
with open(filename, "r") as f:
knownledge = f.read()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
texts = text_splitter.split_text(knownledge)
docsearch = Chroma.from_texts(
@ -21,18 +22,48 @@ def knownledge_tovec(filename):
)
return docsearch
def knownledge_tovec_st(filename):
""" Use sentence transformers to embedding the document.
https://github.com/UKPLab/sentence-transformers
"""
from pilot.configs.model_config import LLM_MODEL_CONFIG
embeddings = HuggingFaceEmbeddings(model_name=LLM_MODEL_CONFIG["sentence-transforms"])
# def knownledge_tovec_st(filename):
# """ Use sentence transformers to embedding the document.
# https://github.com/UKPLab/sentence-transformers
# """
# from pilot.configs.model_config import llm_model_config
# embeddings = SentenceTransformerEmbeddings(model=llm_model_config["sentence-transforms"])
with open(filename, "r") as f:
knownledge = f.read()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
# with open(filename, "r") as f:
# knownledge = f.read()
# text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
# texts = text_splitter(knownledge)
# docsearch = Chroma.from_texts(texts, embeddings, metadatas=[{"source": str(i)} for i in range(len(texts))])
# return docsearch
texts = text_splitter.split_text(knownledge)
docsearch = Chroma.from_texts(texts, embeddings, metadatas=[{"source": str(i)} for i in range(len(texts))])
return docsearch
def load_knownledge_from_doc():
"""从数据集当中加载知识
# TODO 如果向量存储已经存在, 则无需初始化
"""
if not os.path.exists(DATASETS_DIR):
print("Not Exists Local DataSets, We will answers the Question use model default.")
from pilot.configs.model_config import LLM_MODEL_CONFIG
embeddings = HuggingFaceEmbeddings(model_name=LLM_MODEL_CONFIG["sentence-transforms"])
files = os.listdir(DATASETS_DIR)
for file in files:
if not os.path.isdir(file):
filename = os.path.join(DATASETS_DIR, file)
with open(filename, "r") as f:
knownledge = f.read()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_owerlap=0)
texts = text_splitter.split_text(knownledge)
docsearch = Chroma.from_texts(texts, embeddings, metadatas=[{"source": str(i)} for i in range(len(texts))],
persist_directory=os.path.join(VECTORE_PATH, ".vectore"))
return docsearch
def get_vector_storelist():
if not os.path.exists(VECTORE_PATH):
return []
return os.listdir(VECTORE_PATH)

View File

@ -50,4 +50,6 @@ notebook
gradio==3.24.1
gradio-client==0.0.8
wandb
fschat=0.1.10
fschat=0.1.10
llama-index=0.5.27
pymysql