add ft code

This commit is contained in:
csunny 2023-05-07 22:36:21 +08:00
parent 4985e23b11
commit 42d3eec3ae

View File

@ -19,8 +19,162 @@ from datasets import load_dataset
import pandas as pd
from pilot.configs.model_config import DATA_DIR
from pilot.configs.model_config import DATA_DIR, LLM_MODEL, LLM_MODEL_CONFIG
device = "cuda" if torch.cuda.is_available() else "cpu"
CUTOFF = 50
CUTOFF_LEN = 50
df = pd.read_csv(os.path.join(DATA_DIR, "BTC_Tweets_Updated.csv"))
df = pd.read_csv(os.path.join(DATA_DIR, "BTC_Tweets_Updated.csv"))
def sentiment_score_to_name(score: float):
if score > 0:
return "Positive"
elif score < 0:
return "Negative"
return "Neutral"
dataset_data = [
{
"instruction": "Detect the sentiment of the tweet.",
"input": row_dict["Tweet"],
"output": sentiment_score_to_name(row_dict["New_Sentiment_State"])
}
for row_dict in df.to_dict(orient="records")
]
with open(os.path.join(DATA_DIR, "alpaca-bitcoin-sentiment-dataset.json"), "w") as f:
json.dump(dataset_data, f)
data = load_dataset("json", data_files=os.path.join(DATA_DIR, "alpaca-bitcoin-sentiment-dataset.json"))
print(data["train"])
BASE_MODEL = LLM_MODEL_CONFIG[LLM_MODEL]
model = LlamaForCausalLM.from_pretrained(
BASE_MODEL,
torch_dtype=torch.float16,
device_map="auto",
offload_folder=os.path.join(DATA_DIR, "vicuna-lora")
)
tokenizer = LlamaTokenizer.from_pretrained(BASE_MODEL)
tokenizer.pad_token_id = (0)
tokenizer.padding_side = "left"
def generate_prompt(data_point):
return f"""Blow is an instruction that describes a task, paired with an input that provide future context.
Write a response that appropriately completes the request. #noqa:
### Instruct:
{data_point["instruction"]}
### Input
{data_point["input"]}
### Response
{data_point["output"]}
"""
def tokenize(prompt, add_eos_token=True):
result = tokenizer(
prompt,
truncation=True,
max_length=CUTOFF_LEN,
padding=False,
return_tensors=None,
)
if (result["input_ids"][-1] != tokenizer.eos_token_id and len(result["input_ids"]) < CUTOFF_LEN and add_eos_token):
result["input_ids"].append(tokenizer.eos_token_id)
result["attention_mask"].append(1)
result["labels"] = result["input_ids"].copy()
return result
def generate_and_tokenize_prompt(data_point):
full_prompt = generate_prompt(data_point)
tokenized_full_prompt = tokenize(full_prompt)
return tokenized_full_prompt
train_val = data["train"].train_test_split(
test_size=200, shuffle=True, seed=42
)
train_data = (
train_val["train"].map(generate_and_tokenize_prompt)
)
val_data = (
train_val["test"].map(generate_and_tokenize_prompt)
)
# Training
LORA_R = 8
LORA_ALPHA = 16
LORA_DROPOUT = 0.05
LORA_TARGET_MODULES = [
"q_proj",
"v_proj",
]
BATCH_SIZE = 128
MICRO_BATCH_SIZE = 4
GRADIENT_ACCUMULATION_STEPS = BATCH_SIZE // MICRO_BATCH_SIZE
LEARNING_RATE = 3e-4
TRAIN_STEPS = 300
OUTPUT_DIR = "experiments"
# We can now prepare model for training
model = prepare_model_for_int8_training(model)
config = LoraConfig(
r = LORA_R,
lora_alpha=LORA_ALPHA,
target_modules=LORA_TARGET_MODULES,
lora_dropout=LORA_DROPOUT,
bias="none",
task_type="CAUSAL_LM",
)
model = get_peft_model(model, config)
model.print_trainable_parameters()
training_arguments = transformers.TrainingArguments(
per_device_train_batch_size=MICRO_BATCH_SIZE,
gradient_accumulation_steps=GRADIENT_ACCUMULATION_STEPS,
warmup_steps=100,
max_steps=TRAIN_STEPS,
no_cuda=True,
learning_rate=LEARNING_RATE,
logging_steps=10,
optim="adamw_torch",
evaluation_strategy="steps",
save_strategy="steps",
eval_steps=50,
save_steps=50,
output_dir=OUTPUT_DIR,
save_total_limit=3,
load_best_model_at_end=True,
report_to="tensorboard"
)
data_collector = transformers.DataCollatorForSeq2Seq(
tokenizer, pad_to_multiple_of=8, return_tensors="pt", padding=True
)
trainer = transformers.Trainer(
model=model,
train_dataset=train_data,
eval_dataset=val_data,
args=training_arguments,
data_collector=data_collector
)
model.config.use_cache = False
old_state_dict = model.state_dict
model.state_dict = (
lambda self, *_, **__: get_peft_model_state_dict(
self, old_state_dict()
)
).__get__(model, type(model))
trainer.train()
model.save_pretrained(OUTPUT_DIR)