feature:db_summary bootstrap load

This commit is contained in:
aries-ckt 2023-06-05 21:54:30 +08:00
parent e29fa37cde
commit 4b41842277
5 changed files with 26 additions and 78 deletions

View File

@ -47,12 +47,13 @@ class ChatWithDbAutoExecute(BaseChat):
from pilot.summary.db_summary_client import DBSummaryClient
except ImportError:
raise ValueError("Could not import DBSummaryClient. ")
client = DBSummaryClient()
input_values = {
"input": self.current_user_input,
"top_k": str(self.top_k),
"dialect": self.database.dialect,
"table_info": self.database.table_simple_info(self.db_connect)
# "table_info": DBSummaryClient.get_similar_tables(dbname=self.db_name, query=self.current_user_input, topk=self.top_k)
# "table_info": client.get_similar_tables(dbname=self.db_name, query=self.current_user_input, topk=self.top_k)
}
return input_values

View File

@ -45,7 +45,8 @@ class ChatWithDbQA(BaseChat):
except ImportError:
raise ValueError("Could not import DBSummaryClient. ")
if self.db_name:
table_info = DBSummaryClient.get_similar_tables(
client = DBSummaryClient()
table_info = client.get_similar_tables(
dbname=self.db_name, query=self.current_user_input, topk=self.top_k
)
# table_info = self.database.table_simple_info(self.db_connect)

View File

@ -1,5 +1,6 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import threading
import traceback
import argparse
import datetime
@ -414,7 +415,7 @@ def build_single_model_ui():
show_label=True,
).style(container=False)
db_selector.change(fn=db_selector_changed, inputs=db_selector)
# db_selector.change(fn=db_selector_changed, inputs=db_selector)
sql_mode = gr.Radio(
[
@ -618,10 +619,6 @@ def save_vs_name(vs_name):
return vs_name
def db_selector_changed(dbname):
DBSummaryClient.db_summary_embedding(dbname)
def knowledge_embedding_store(vs_id, files):
# vs_path = os.path.join(VS_ROOT_PATH, vs_id)
if not os.path.exists(os.path.join(KNOWLEDGE_UPLOAD_ROOT_PATH, vs_id)):
@ -645,6 +642,12 @@ def knowledge_embedding_store(vs_id, files):
return vs_id
def async_db_summery():
client = DBSummaryClient()
thread = threading.Thread(target=client.init_db_summary)
thread.start()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--host", type=str, default="0.0.0.0")
@ -661,7 +664,7 @@ if __name__ == "__main__":
cfg = Config()
dbs = cfg.local_db.get_database_list()
async_db_summery()
cfg.set_plugins(scan_plugins(cfg, cfg.debug_mode))
# 加载插件可执行命令

View File

@ -1,14 +1,8 @@
import os
from typing import Optional
import markdown
from bs4 import BeautifulSoup
from langchain.document_loaders import PyPDFLoader, TextLoader
from langchain.embeddings import HuggingFaceEmbeddings
from pilot.configs.config import Config
from pilot.configs.model_config import DATASETS_DIR, KNOWLEDGE_CHUNK_SPLIT_SIZE
from pilot.source_embedding.chn_document_splitter import CHNDocumentSplitter
from pilot.source_embedding.csv_embedding import CSVEmbedding
from pilot.source_embedding.markdown_embedding import MarkdownEmbedding
from pilot.source_embedding.pdf_embedding import PDFEmbedding
@ -82,61 +76,3 @@ class KnowledgeEmbedding:
CFG.VECTOR_STORE_TYPE, self.vector_store_config
)
return vector_client.vector_name_exists()
def knowledge_persist_initialization(self, append_mode):
documents = self._load_knownlege(self.file_path)
self.vector_client = VectorStoreConnector(
CFG.VECTOR_STORE_TYPE, self.vector_store_config
)
self.vector_client.load_document(documents)
return self.vector_client
def _load_knownlege(self, path):
docments = []
for root, _, files in os.walk(path, topdown=False):
for file in files:
filename = os.path.join(root, file)
docs = self._load_file(filename)
new_docs = []
for doc in docs:
doc.metadata = {
"source": doc.metadata["source"].replace(DATASETS_DIR, "")
}
print("doc is embedding...", doc.metadata)
new_docs.append(doc)
docments += new_docs
return docments
def _load_file(self, filename):
if filename.lower().endswith(".md"):
loader = TextLoader(filename)
text_splitter = CHNDocumentSplitter(
pdf=True, sentence_size=KNOWLEDGE_CHUNK_SPLIT_SIZE
)
docs = loader.load_and_split(text_splitter)
i = 0
for d in docs:
content = markdown.markdown(d.page_content)
soup = BeautifulSoup(content, "html.parser")
for tag in soup(["!doctype", "meta", "i.fa"]):
tag.extract()
docs[i].page_content = soup.get_text()
docs[i].page_content = docs[i].page_content.replace("\n", " ")
i += 1
elif filename.lower().endswith(".pdf"):
loader = PyPDFLoader(filename)
textsplitter = CHNDocumentSplitter(
pdf=True, sentence_size=KNOWLEDGE_CHUNK_SPLIT_SIZE
)
docs = loader.load_and_split(textsplitter)
i = 0
for d in docs:
docs[i].page_content = d.page_content.replace("\n", " ").replace(
"<EFBFBD>", ""
)
i += 1
else:
loader = TextLoader(filename)
text_splitor = CHNDocumentSplitter(sentence_size=KNOWLEDGE_CHUNK_SPLIT_SIZE)
docs = loader.load_and_split(text_splitor)
return docs

View File

@ -21,8 +21,10 @@ class DBSummaryClient:
, get_similar_tables method(get user query related tables info)
"""
@staticmethod
def db_summary_embedding(dbname):
def __init__(self):
pass
def db_summary_embedding(self, dbname):
"""put db profile and table profile summary into vector store"""
if CFG.LOCAL_DB_HOST is not None and CFG.LOCAL_DB_PORT is not None:
db_summary_client = MysqlSummary(dbname)
@ -56,7 +58,7 @@ class DBSummaryClient:
table_summary,
) in db_summary_client.get_table_summary().items():
table_vector_store_config = {
"vector_store_name": table_name + "_ts",
"vector_store_name": dbname + "_" + table_name + "_ts",
"embeddings": embeddings,
}
embedding = StringEmbedding(
@ -67,8 +69,7 @@ class DBSummaryClient:
logger.info("db summary embedding success")
@staticmethod
def get_similar_tables(dbname, query, topk):
def get_similar_tables(self, dbname, query, topk):
"""get user query related tables info"""
vector_store_config = {
"vector_store_name": dbname + "_profile",
@ -94,7 +95,7 @@ class DBSummaryClient:
related_table_summaries = []
for table in related_tables:
vector_store_config = {
"vector_store_name": table + "_ts",
"vector_store_name": dbname + "_" + table + "_ts",
}
knowledge_embedding_client = KnowledgeEmbedding(
file_path="",
@ -105,6 +106,12 @@ class DBSummaryClient:
related_table_summaries.append(table_summery[0].page_content)
return related_table_summaries
def init_db_summary(self):
db = CFG.local_db
dbs = db.get_database_list()
for dbname in dbs:
self.db_summary_embedding(dbname)
def _get_llm_response(query, db_input, dbsummary):
chat_param = {