refactor: rename the data privacy module

rename data privace module.
This commit is contained in:
xuyuan23 2023-07-28 14:45:27 +08:00
parent 14ae10d4da
commit 4da524340c
13 changed files with 8 additions and 8 deletions

View File

@ -3,7 +3,7 @@
# This workflow uses actions that are not certified by GitHub.
# They are provided by a third-party and are governed by
# separate terms of service, privacy policy, and support
# separate terms of service, data_privacy policy, and support
# documentation.
name: Upload Python Package

View File

@ -4,12 +4,12 @@ import time
from pilot.configs.config import Config
from pilot.model.proxy.proxy_llms.chatgpt import chatgpt_generate_stream
from pilot.model.proxy.proxy_llms.bard import bard_generate_stream
from pilot.model.proxy.proxy_llms.claude import claude_generate_stream
from pilot.model.proxy.proxy_llms.wenxin import wenxin_generate_stream
from pilot.model.proxy.proxy_llms.tongyi import tongyi_generate_stream
from pilot.model.proxy.proxy_llms.gpt4 import gpt4_generate_stream
from pilot.model.proxy.llms.chatgpt import chatgpt_generate_stream
from pilot.model.proxy.llms.bard import bard_generate_stream
from pilot.model.proxy.llms.claude import claude_generate_stream
from pilot.model.proxy.llms.wenxin import wenxin_generate_stream
from pilot.model.proxy.llms.tongyi import tongyi_generate_stream
from pilot.model.proxy.llms.gpt4 import gpt4_generate_stream
CFG = Config()

View File

@ -1,5 +1,5 @@
"""
There are several limitations to privatizing large models: high deployment costs and poor performance.
In scenarios where data privacy requirements are relatively low, connecting with commercial large models can enable
In scenarios where data data_privacy requirements are relatively low, connecting with commercial large models can enable
rapid and efficient product implementation with high quality.
"""