mirror of
https://github.com/csunny/DB-GPT.git
synced 2025-07-30 15:21:02 +00:00
fix(model): Fix benchmarks bugs
This commit is contained in:
parent
1f22459fbe
commit
4ffd054a2a
@ -1,9 +1,9 @@
|
||||
import os
|
||||
import logging
|
||||
from typing import Dict, Iterator, List, Optional
|
||||
|
||||
from typing import Dict, Iterator, List, Optional
|
||||
import time
|
||||
import copy
|
||||
import traceback
|
||||
|
||||
from pilot.configs.model_config import get_device
|
||||
from pilot.model.model_adapter import get_llm_model_adapter, LLMModelAdaper
|
||||
@ -332,6 +332,8 @@ class DefaultModelWorker(ModelWorker):
|
||||
text="**GPU OutOfMemory, Please Refresh.**", error_code=1
|
||||
)
|
||||
else:
|
||||
msg = traceback.format_exc()
|
||||
logger.error(f"Model inference error, detail: {msg}")
|
||||
model_output = ModelOutput(
|
||||
text=f"**LLMServer Generate Error, Please CheckErrorInfo.**: {e}",
|
||||
error_code=1,
|
||||
|
@ -1,9 +1,13 @@
|
||||
from typing import Dict
|
||||
import os
|
||||
from vllm import AsyncLLMEngine
|
||||
from vllm.utils import random_uuid
|
||||
from vllm.sampling_params import SamplingParams
|
||||
|
||||
|
||||
_IS_BENCHMARK = os.getenv("DB_GPT_MODEL_BENCHMARK", "False").lower() == "true"
|
||||
|
||||
|
||||
async def generate_stream(
|
||||
model: AsyncLLMEngine, tokenizer, params: Dict, device: str, context_len: int
|
||||
):
|
||||
@ -37,15 +41,29 @@ async def generate_stream(
|
||||
top_p = max(top_p, 1e-5)
|
||||
if temperature <= 1e-5:
|
||||
top_p = 1.0
|
||||
gen_params = {
|
||||
"stop": list(stop),
|
||||
"ignore_eos": False,
|
||||
}
|
||||
prompt_token_ids = None
|
||||
if _IS_BENCHMARK:
|
||||
gen_params["stop"] = []
|
||||
gen_params["ignore_eos"] = True
|
||||
prompt_len = context_len - max_new_tokens - 2
|
||||
prompt_token_ids = tokenizer([prompt]).input_ids[0]
|
||||
prompt_token_ids = prompt_token_ids[-prompt_len:]
|
||||
sampling_params = SamplingParams(
|
||||
n=1,
|
||||
temperature=temperature,
|
||||
top_p=top_p,
|
||||
use_beam_search=False,
|
||||
stop=list(stop),
|
||||
max_tokens=max_new_tokens,
|
||||
**gen_params
|
||||
)
|
||||
|
||||
results_generator = model.generate(
|
||||
prompt, sampling_params, request_id, prompt_token_ids=prompt_token_ids
|
||||
)
|
||||
results_generator = model.generate(prompt, sampling_params, request_id)
|
||||
async for request_output in results_generator:
|
||||
prompt = request_output.prompt
|
||||
if echo:
|
||||
|
@ -39,7 +39,7 @@ if TYPE_CHECKING:
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
thread_local = threading.local()
|
||||
|
||||
_IS_BENCHMARK = os.getenv("DB_GPT_MODEL_BENCHMARK", "False").lower() == "true"
|
||||
|
||||
_OLD_MODELS = [
|
||||
"llama-cpp",
|
||||
@ -228,9 +228,16 @@ class FastChatLLMModelAdaperWrapper(LLMModelAdaper):
|
||||
return self._adapter.load_model(model_path, from_pretrained_kwargs)
|
||||
|
||||
def get_generate_stream_function(self, model: "TorchNNModule", model_path: str):
|
||||
from fastchat.model.model_adapter import get_generate_stream_function
|
||||
if _IS_BENCHMARK:
|
||||
from pilot.utils.benchmarks.llm.fastchat_benchmarks_inference import (
|
||||
generate_stream,
|
||||
)
|
||||
|
||||
return get_generate_stream_function(model, model_path)
|
||||
return generate_stream
|
||||
else:
|
||||
from fastchat.model.model_adapter import get_generate_stream_function
|
||||
|
||||
return get_generate_stream_function(model, model_path)
|
||||
|
||||
def get_default_conv_template(
|
||||
self, model_name: str, model_path: str
|
||||
|
565
pilot/utils/benchmarks/llm/fastchat_benchmarks_inference.py
Normal file
565
pilot/utils/benchmarks/llm/fastchat_benchmarks_inference.py
Normal file
@ -0,0 +1,565 @@
|
||||
"""
|
||||
Adapted from fastchat: https://github.com/lm-sys/FastChat/blob/main/fastchat/serve/inference.py.
|
||||
For benchmarks.
|
||||
|
||||
"""
|
||||
import abc
|
||||
import gc
|
||||
import json
|
||||
import math
|
||||
import os
|
||||
import sys
|
||||
import time
|
||||
from typing import Iterable, Optional, Dict, TYPE_CHECKING
|
||||
import warnings
|
||||
|
||||
import psutil
|
||||
import torch
|
||||
from transformers import (
|
||||
AutoTokenizer,
|
||||
AutoModelForCausalLM,
|
||||
LlamaTokenizer,
|
||||
LlamaForCausalLM,
|
||||
AutoModel,
|
||||
AutoModelForSeq2SeqLM,
|
||||
T5Tokenizer,
|
||||
AutoConfig,
|
||||
)
|
||||
from transformers.generation.logits_process import (
|
||||
LogitsProcessorList,
|
||||
RepetitionPenaltyLogitsProcessor,
|
||||
TemperatureLogitsWarper,
|
||||
TopKLogitsWarper,
|
||||
TopPLogitsWarper,
|
||||
)
|
||||
|
||||
from fastchat.conversation import get_conv_template, SeparatorStyle
|
||||
from fastchat.model.model_adapter import (
|
||||
load_model,
|
||||
get_conversation_template,
|
||||
get_generate_stream_function,
|
||||
)
|
||||
from fastchat.modules.awq import AWQConfig
|
||||
from fastchat.modules.gptq import GptqConfig
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from fastchat.modules.exllama import ExllamaConfig
|
||||
from fastchat.modules.xfastertransformer import XftConfig
|
||||
|
||||
from fastchat.utils import is_partial_stop, is_sentence_complete, get_context_length
|
||||
|
||||
|
||||
def prepare_logits_processor(
|
||||
temperature: float, repetition_penalty: float, top_p: float, top_k: int
|
||||
) -> LogitsProcessorList:
|
||||
processor_list = LogitsProcessorList()
|
||||
# TemperatureLogitsWarper doesn't accept 0.0, 1.0 makes it a no-op so we skip two cases.
|
||||
if temperature >= 1e-5 and temperature != 1.0:
|
||||
processor_list.append(TemperatureLogitsWarper(temperature))
|
||||
if repetition_penalty > 1.0:
|
||||
processor_list.append(RepetitionPenaltyLogitsProcessor(repetition_penalty))
|
||||
if 1e-8 <= top_p < 1.0:
|
||||
processor_list.append(TopPLogitsWarper(top_p))
|
||||
if top_k > 0:
|
||||
processor_list.append(TopKLogitsWarper(top_k))
|
||||
return processor_list
|
||||
|
||||
|
||||
@torch.inference_mode()
|
||||
def generate_stream(
|
||||
model,
|
||||
tokenizer,
|
||||
params: Dict,
|
||||
device: str,
|
||||
context_len: int,
|
||||
stream_interval: int = 2,
|
||||
judge_sent_end: bool = False,
|
||||
):
|
||||
if hasattr(model, "device"):
|
||||
device = model.device
|
||||
|
||||
# Read parameters
|
||||
prompt = params["prompt"]
|
||||
len_prompt = len(prompt)
|
||||
temperature = float(params.get("temperature", 1.0))
|
||||
repetition_penalty = float(params.get("repetition_penalty", 1.0))
|
||||
top_p = float(params.get("top_p", 1.0))
|
||||
top_k = int(params.get("top_k", -1)) # -1 means disable
|
||||
max_new_tokens = int(params.get("max_new_tokens", 256))
|
||||
logprobs = params.get("logprobs", None) # FIXME: Support logprobs>1.
|
||||
echo = bool(params.get("echo", True))
|
||||
stop_str = params.get("stop", None)
|
||||
stop_token_ids = params.get("stop_token_ids", None) or []
|
||||
if tokenizer.eos_token_id not in stop_token_ids:
|
||||
stop_token_ids.append(tokenizer.eos_token_id)
|
||||
|
||||
logits_processor = prepare_logits_processor(
|
||||
temperature, repetition_penalty, top_p, top_k
|
||||
)
|
||||
input_ids = tokenizer(prompt).input_ids
|
||||
|
||||
if model.config.is_encoder_decoder:
|
||||
max_src_len = context_len
|
||||
else: # truncate
|
||||
max_src_len = context_len - max_new_tokens - 1
|
||||
|
||||
input_ids = input_ids[-max_src_len:]
|
||||
output_ids = list(input_ids)
|
||||
input_echo_len = len(input_ids)
|
||||
|
||||
# Don't stop generate until max_new_tokens is reached.
|
||||
stop_token_ids = []
|
||||
stop_str = None
|
||||
|
||||
if model.config.is_encoder_decoder:
|
||||
if logprobs is not None: # FIXME: Support logprobs for encoder-decoder models.
|
||||
raise NotImplementedError
|
||||
encoder_output = model.encoder(
|
||||
input_ids=torch.as_tensor([input_ids], device=device)
|
||||
)[0]
|
||||
start_ids = torch.as_tensor(
|
||||
[[model.generation_config.decoder_start_token_id]],
|
||||
dtype=torch.int64,
|
||||
device=device,
|
||||
)
|
||||
else:
|
||||
start_ids = torch.as_tensor([input_ids], device=device)
|
||||
|
||||
past_key_values = out = None
|
||||
token_logprobs = [None] # The first token has no logprobs.
|
||||
sent_interrupt = False
|
||||
finish_reason = None
|
||||
for i in range(max_new_tokens):
|
||||
if i == 0: # prefill
|
||||
if model.config.is_encoder_decoder:
|
||||
out = model.decoder(
|
||||
input_ids=start_ids,
|
||||
encoder_hidden_states=encoder_output,
|
||||
use_cache=True,
|
||||
)
|
||||
logits = model.lm_head(out[0])
|
||||
else:
|
||||
out = model(input_ids=start_ids, use_cache=True)
|
||||
logits = out.logits
|
||||
past_key_values = out.past_key_values
|
||||
|
||||
if logprobs is not None:
|
||||
# Prefull logprobs for the prompt.
|
||||
shift_input_ids = start_ids[..., 1:].contiguous()
|
||||
shift_logits = logits[..., :-1, :].contiguous()
|
||||
shift_logits = torch.log_softmax(shift_logits, dim=-1).tolist()
|
||||
for label_id, logit in zip(
|
||||
shift_input_ids[0].tolist(), shift_logits[0]
|
||||
):
|
||||
token_logprobs.append(logit[label_id])
|
||||
else: # decoding
|
||||
if model.config.is_encoder_decoder:
|
||||
out = model.decoder(
|
||||
input_ids=torch.as_tensor(
|
||||
[[token] if not sent_interrupt else output_ids],
|
||||
device=device,
|
||||
),
|
||||
encoder_hidden_states=encoder_output,
|
||||
use_cache=True,
|
||||
past_key_values=past_key_values if not sent_interrupt else None,
|
||||
)
|
||||
sent_interrupt = False
|
||||
|
||||
logits = model.lm_head(out[0])
|
||||
else:
|
||||
out = model(
|
||||
input_ids=torch.as_tensor(
|
||||
[[token] if not sent_interrupt else output_ids],
|
||||
device=device,
|
||||
),
|
||||
use_cache=True,
|
||||
past_key_values=past_key_values if not sent_interrupt else None,
|
||||
)
|
||||
sent_interrupt = False
|
||||
logits = out.logits
|
||||
past_key_values = out.past_key_values
|
||||
|
||||
if logits_processor:
|
||||
if repetition_penalty > 1.0:
|
||||
tmp_output_ids = torch.as_tensor([output_ids], device=logits.device)
|
||||
else:
|
||||
tmp_output_ids = None
|
||||
last_token_logits = logits_processor(tmp_output_ids, logits[:, -1, :])[0]
|
||||
else:
|
||||
last_token_logits = logits[0, -1, :]
|
||||
|
||||
if device == "mps":
|
||||
# Switch to CPU by avoiding some bugs in mps backend.
|
||||
last_token_logits = last_token_logits.float().to("cpu")
|
||||
|
||||
if temperature < 1e-5 or top_p < 1e-8: # greedy
|
||||
_, indices = torch.topk(last_token_logits, 2)
|
||||
tokens = [int(index) for index in indices.tolist()]
|
||||
else:
|
||||
probs = torch.softmax(last_token_logits, dim=-1)
|
||||
indices = torch.multinomial(probs, num_samples=2)
|
||||
tokens = [int(token) for token in indices.tolist()]
|
||||
token = tokens[0]
|
||||
output_ids.append(token)
|
||||
if logprobs is not None:
|
||||
# Cannot use last_token_logits because logprobs is based on raw logits.
|
||||
token_logprobs.append(
|
||||
torch.log_softmax(logits[0, -1, :], dim=-1)[token].tolist()
|
||||
)
|
||||
|
||||
if token in stop_token_ids:
|
||||
stopped = True
|
||||
else:
|
||||
stopped = False
|
||||
|
||||
# Yield the output tokens
|
||||
if i % stream_interval == 0 or i == max_new_tokens - 1 or stopped:
|
||||
if echo:
|
||||
tmp_output_ids = output_ids
|
||||
rfind_start = len_prompt
|
||||
else:
|
||||
tmp_output_ids = output_ids[input_echo_len:]
|
||||
rfind_start = 0
|
||||
|
||||
output = tokenizer.decode(
|
||||
tmp_output_ids,
|
||||
skip_special_tokens=True,
|
||||
spaces_between_special_tokens=False,
|
||||
clean_up_tokenization_spaces=True,
|
||||
)
|
||||
ret_logprobs = None
|
||||
if logprobs is not None:
|
||||
ret_logprobs = {
|
||||
"text_offset": [],
|
||||
"tokens": [
|
||||
tokenizer.decode(token)
|
||||
for token in (
|
||||
output_ids if echo else output_ids[input_echo_len:]
|
||||
)
|
||||
],
|
||||
"token_logprobs": token_logprobs
|
||||
if echo
|
||||
else token_logprobs[input_echo_len:],
|
||||
"top_logprobs": [{}]
|
||||
* len(token_logprobs if echo else token_logprobs[input_echo_len:]),
|
||||
}
|
||||
# Compute text_offset
|
||||
curr_pos = 0
|
||||
for text in ret_logprobs["tokens"]:
|
||||
ret_logprobs["text_offset"].append(curr_pos)
|
||||
curr_pos += len(text)
|
||||
|
||||
# TODO: For the issue of incomplete sentences interrupting output, apply a patch and others can also modify it to a more elegant way
|
||||
if judge_sent_end and stopped and not is_sentence_complete(output):
|
||||
if len(tokens) > 1:
|
||||
token = tokens[1]
|
||||
output_ids[-1] = token
|
||||
else:
|
||||
output_ids.pop()
|
||||
stopped = False
|
||||
sent_interrupt = True
|
||||
|
||||
partially_stopped = False
|
||||
if stop_str:
|
||||
if isinstance(stop_str, str):
|
||||
pos = output.rfind(stop_str, rfind_start)
|
||||
if pos != -1:
|
||||
output = output[:pos]
|
||||
stopped = True
|
||||
else:
|
||||
partially_stopped = is_partial_stop(output, stop_str)
|
||||
elif isinstance(stop_str, Iterable):
|
||||
for each_stop in stop_str:
|
||||
pos = output.rfind(each_stop, rfind_start)
|
||||
if pos != -1:
|
||||
output = output[:pos]
|
||||
stopped = True
|
||||
break
|
||||
else:
|
||||
partially_stopped = is_partial_stop(output, each_stop)
|
||||
if partially_stopped:
|
||||
break
|
||||
else:
|
||||
raise ValueError("Invalid stop field type.")
|
||||
|
||||
# Prevent yielding partial stop sequence
|
||||
if not partially_stopped:
|
||||
yield {
|
||||
"text": output,
|
||||
"logprobs": ret_logprobs,
|
||||
"usage": {
|
||||
"prompt_tokens": input_echo_len,
|
||||
"completion_tokens": i,
|
||||
"total_tokens": input_echo_len + i,
|
||||
},
|
||||
"finish_reason": None,
|
||||
}
|
||||
|
||||
if stopped:
|
||||
break
|
||||
|
||||
# Finish stream event, which contains finish reason
|
||||
else:
|
||||
finish_reason = "length"
|
||||
|
||||
if stopped:
|
||||
finish_reason = "stop"
|
||||
|
||||
yield {
|
||||
"text": output,
|
||||
"logprobs": ret_logprobs,
|
||||
"usage": {
|
||||
"prompt_tokens": input_echo_len,
|
||||
"completion_tokens": i,
|
||||
"total_tokens": input_echo_len + i,
|
||||
},
|
||||
"finish_reason": finish_reason,
|
||||
}
|
||||
|
||||
# Clean
|
||||
del past_key_values, out
|
||||
gc.collect()
|
||||
torch.cuda.empty_cache()
|
||||
if device == "xpu":
|
||||
torch.xpu.empty_cache()
|
||||
if device == "npu":
|
||||
torch.npu.empty_cache()
|
||||
|
||||
|
||||
class ChatIO(abc.ABC):
|
||||
@abc.abstractmethod
|
||||
def prompt_for_input(self, role: str) -> str:
|
||||
"""Prompt for input from a role."""
|
||||
|
||||
@abc.abstractmethod
|
||||
def prompt_for_output(self, role: str):
|
||||
"""Prompt for output from a role."""
|
||||
|
||||
@abc.abstractmethod
|
||||
def stream_output(self, output_stream):
|
||||
"""Stream output."""
|
||||
|
||||
@abc.abstractmethod
|
||||
def print_output(self, text: str):
|
||||
"""Print output."""
|
||||
|
||||
|
||||
def chat_loop(
|
||||
model_path: str,
|
||||
device: str,
|
||||
num_gpus: int,
|
||||
max_gpu_memory: str,
|
||||
dtype: Optional[torch.dtype],
|
||||
load_8bit: bool,
|
||||
cpu_offloading: bool,
|
||||
conv_template: Optional[str],
|
||||
conv_system_msg: Optional[str],
|
||||
temperature: float,
|
||||
repetition_penalty: float,
|
||||
max_new_tokens: int,
|
||||
chatio: ChatIO,
|
||||
gptq_config: Optional[GptqConfig] = None,
|
||||
awq_config: Optional[AWQConfig] = None,
|
||||
exllama_config: Optional["ExllamaConfig"] = None,
|
||||
xft_config: Optional["XftConfig"] = None,
|
||||
revision: str = "main",
|
||||
judge_sent_end: bool = True,
|
||||
debug: bool = True,
|
||||
history: bool = True,
|
||||
):
|
||||
# Model
|
||||
model, tokenizer = load_model(
|
||||
model_path,
|
||||
device=device,
|
||||
num_gpus=num_gpus,
|
||||
max_gpu_memory=max_gpu_memory,
|
||||
dtype=dtype,
|
||||
load_8bit=load_8bit,
|
||||
cpu_offloading=cpu_offloading,
|
||||
gptq_config=gptq_config,
|
||||
awq_config=awq_config,
|
||||
exllama_config=exllama_config,
|
||||
xft_config=xft_config,
|
||||
revision=revision,
|
||||
debug=debug,
|
||||
)
|
||||
generate_stream_func = get_generate_stream_function(model, model_path)
|
||||
|
||||
model_type = str(type(model)).lower()
|
||||
is_t5 = "t5" in model_type
|
||||
is_codet5p = "codet5p" in model_type
|
||||
is_xft = "xft" in model_type
|
||||
|
||||
# Hardcode T5's default repetition penalty to be 1.2
|
||||
if is_t5 and repetition_penalty == 1.0:
|
||||
repetition_penalty = 1.2
|
||||
|
||||
# Set context length
|
||||
context_len = get_context_length(model.config)
|
||||
|
||||
# Chat
|
||||
def new_chat():
|
||||
if conv_template:
|
||||
conv = get_conv_template(conv_template)
|
||||
else:
|
||||
conv = get_conversation_template(model_path)
|
||||
if conv_system_msg is not None:
|
||||
conv.set_system_message(conv_system_msg)
|
||||
return conv
|
||||
|
||||
def reload_conv(conv):
|
||||
"""
|
||||
Reprints the conversation from the start.
|
||||
"""
|
||||
for message in conv.messages[conv.offset :]:
|
||||
chatio.prompt_for_output(message[0])
|
||||
chatio.print_output(message[1])
|
||||
|
||||
conv = None
|
||||
|
||||
while True:
|
||||
if not history or not conv:
|
||||
conv = new_chat()
|
||||
|
||||
try:
|
||||
inp = chatio.prompt_for_input(conv.roles[0])
|
||||
except EOFError:
|
||||
inp = ""
|
||||
|
||||
if inp == "!!exit" or not inp:
|
||||
print("exit...")
|
||||
break
|
||||
elif inp == "!!reset":
|
||||
print("resetting...")
|
||||
conv = new_chat()
|
||||
continue
|
||||
elif inp == "!!remove":
|
||||
print("removing last message...")
|
||||
if len(conv.messages) > conv.offset:
|
||||
# Assistant
|
||||
if conv.messages[-1][0] == conv.roles[1]:
|
||||
conv.messages.pop()
|
||||
# User
|
||||
if conv.messages[-1][0] == conv.roles[0]:
|
||||
conv.messages.pop()
|
||||
reload_conv(conv)
|
||||
else:
|
||||
print("No messages to remove.")
|
||||
continue
|
||||
elif inp == "!!regen":
|
||||
print("regenerating last message...")
|
||||
if len(conv.messages) > conv.offset:
|
||||
# Assistant
|
||||
if conv.messages[-1][0] == conv.roles[1]:
|
||||
conv.messages.pop()
|
||||
# User
|
||||
if conv.messages[-1][0] == conv.roles[0]:
|
||||
reload_conv(conv)
|
||||
# Set inp to previous message
|
||||
inp = conv.messages.pop()[1]
|
||||
else:
|
||||
# Shouldn't happen in normal circumstances
|
||||
print("No user message to regenerate from.")
|
||||
continue
|
||||
else:
|
||||
print("No messages to regenerate.")
|
||||
continue
|
||||
elif inp.startswith("!!save"):
|
||||
args = inp.split(" ", 1)
|
||||
|
||||
if len(args) != 2:
|
||||
print("usage: !!save <filename>")
|
||||
continue
|
||||
else:
|
||||
filename = args[1]
|
||||
|
||||
# Add .json if extension not present
|
||||
if not "." in filename:
|
||||
filename += ".json"
|
||||
|
||||
print("saving...", filename)
|
||||
with open(filename, "w") as outfile:
|
||||
json.dump(conv.dict(), outfile)
|
||||
continue
|
||||
elif inp.startswith("!!load"):
|
||||
args = inp.split(" ", 1)
|
||||
|
||||
if len(args) != 2:
|
||||
print("usage: !!load <filename>")
|
||||
continue
|
||||
else:
|
||||
filename = args[1]
|
||||
|
||||
# Check if file exists and add .json if needed
|
||||
if not os.path.exists(filename):
|
||||
if (not filename.endswith(".json")) and os.path.exists(
|
||||
filename + ".json"
|
||||
):
|
||||
filename += ".json"
|
||||
else:
|
||||
print("file not found:", filename)
|
||||
continue
|
||||
|
||||
print("loading...", filename)
|
||||
with open(filename, "r") as infile:
|
||||
new_conv = json.load(infile)
|
||||
|
||||
conv = get_conv_template(new_conv["template_name"])
|
||||
conv.set_system_message(new_conv["system_message"])
|
||||
conv.messages = new_conv["messages"]
|
||||
reload_conv(conv)
|
||||
continue
|
||||
|
||||
conv.append_message(conv.roles[0], inp)
|
||||
conv.append_message(conv.roles[1], None)
|
||||
prompt = conv.get_prompt()
|
||||
|
||||
if is_codet5p: # codet5p is a code completion model.
|
||||
prompt = inp
|
||||
|
||||
gen_params = {
|
||||
"model": model_path,
|
||||
"prompt": prompt,
|
||||
"temperature": temperature,
|
||||
"repetition_penalty": repetition_penalty,
|
||||
"max_new_tokens": max_new_tokens,
|
||||
"stop": conv.stop_str,
|
||||
"stop_token_ids": conv.stop_token_ids,
|
||||
"echo": False,
|
||||
}
|
||||
|
||||
try:
|
||||
chatio.prompt_for_output(conv.roles[1])
|
||||
output_stream = generate_stream_func(
|
||||
model,
|
||||
tokenizer,
|
||||
gen_params,
|
||||
device,
|
||||
context_len=context_len,
|
||||
judge_sent_end=judge_sent_end,
|
||||
)
|
||||
t = time.time()
|
||||
outputs = chatio.stream_output(output_stream)
|
||||
duration = time.time() - t
|
||||
conv.update_last_message(outputs.strip())
|
||||
|
||||
if debug:
|
||||
num_tokens = len(tokenizer.encode(outputs))
|
||||
msg = {
|
||||
"conv_template": conv.name,
|
||||
"prompt": prompt,
|
||||
"outputs": outputs,
|
||||
"speed (token/s)": round(num_tokens / duration, 2),
|
||||
}
|
||||
print(f"\n{msg}\n")
|
||||
|
||||
except KeyboardInterrupt:
|
||||
print("stopped generation.")
|
||||
# If generation didn't finish
|
||||
if conv.messages[-1][1] is None:
|
||||
conv.messages.pop()
|
||||
# Remove last user message, so there isn't a double up
|
||||
if conv.messages[-1][0] == conv.roles[0]:
|
||||
conv.messages.pop()
|
||||
|
||||
reload_conv(conv)
|
@ -40,15 +40,6 @@ def get_result_csv_file() -> str:
|
||||
)
|
||||
|
||||
|
||||
input_output_length_pair = [
|
||||
[64, 256],
|
||||
[64, 512],
|
||||
[64, 1024],
|
||||
[512, 1024],
|
||||
[1024, 1024],
|
||||
[1024, 2048],
|
||||
[2048, 2048],
|
||||
]
|
||||
input_lens = [64, 64]
|
||||
output_lens = [256, 512]
|
||||
|
||||
@ -96,8 +87,8 @@ def build_param(
|
||||
system_prompt: str = None,
|
||||
) -> Dict:
|
||||
hist = []
|
||||
if system_prompt:
|
||||
hist.append()(
|
||||
if system_prompt is not None:
|
||||
hist.append(
|
||||
ModelMessage(role=ModelMessageRoleType.SYSTEM, content=system_prompt)
|
||||
)
|
||||
hist.append(ModelMessage(role=ModelMessageRoleType.HUMAN, content=user_input))
|
||||
@ -119,8 +110,15 @@ async def run_batch(
|
||||
):
|
||||
tasks = []
|
||||
prompt = read_prompt_from_file("11k")
|
||||
if model_type == "vllm":
|
||||
max_input_str_len = input_len
|
||||
if "baichuan" in model_name:
|
||||
# TODO prompt handle first
|
||||
max_input_str_len *= 2
|
||||
prompt = prompt[-max_input_str_len:]
|
||||
|
||||
for _ in range(parallel_num):
|
||||
params = build_param(input_len, output_len, prompt)
|
||||
params = build_param(input_len, output_len, prompt, system_prompt="")
|
||||
tasks.append(wh.generate(params))
|
||||
print(
|
||||
f"Begin run benchmarks, model name: {model_name}, input_len: {input_len}, output_len: {output_len}, parallel_num: {parallel_num}, save result to {output_file}"
|
||||
@ -136,6 +134,7 @@ async def run_batch(
|
||||
metrics = r.metrics
|
||||
if isinstance(metrics, dict):
|
||||
metrics = ModelInferenceMetrics(**metrics)
|
||||
print(r)
|
||||
test_total_tokens += metrics.total_tokens
|
||||
row_data = metrics.to_dict()
|
||||
rows.append(row_data)
|
||||
|
@ -11,7 +11,7 @@ parallel_nums=${3:-$default_parallel_nums}
|
||||
run_benchmark() {
|
||||
local model_name=$1
|
||||
local model_type=$2
|
||||
python pilot/utils/benchmarks/llm/llm_benchmarks.py --model_name ${model_name} --model_type ${model_type} --input_lens ${input_lens} --output_lens ${output_lens} --parallel_nums ${parallel_nums}
|
||||
DB_GPT_MODEL_BENCHMARK=true python pilot/utils/benchmarks/llm/llm_benchmarks.py --model_name ${model_name} --model_type ${model_type} --input_lens ${input_lens} --output_lens ${output_lens} --parallel_nums ${parallel_nums}
|
||||
}
|
||||
|
||||
run_benchmark "vicuna-7b-v1.5" "huggingface"
|
||||
|
Loading…
Reference in New Issue
Block a user