load base knownledge

This commit is contained in:
csunny 2023-05-05 23:42:51 +08:00
parent d9f5130db4
commit 529f077409
4 changed files with 54 additions and 14 deletions

View File

@ -8,7 +8,7 @@ ROOT_PATH = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__fi
MODEL_PATH = os.path.join(ROOT_PATH, "models")
VECTORE_PATH = os.path.join(ROOT_PATH, "vector_store")
LOGDIR = os.path.join(ROOT_PATH, "logs")
DATASETS_DIR = os.path.join(ROOT_PATH, "datasets")
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
LLM_MODEL_CONFIG = {

View File

@ -12,7 +12,7 @@ import requests
from urllib.parse import urljoin
from pilot.configs.model_config import DB_SETTINGS
from pilot.connections.mysql_conn import MySQLOperator
from pilot.vector_store.extract_tovec import get_vector_storelist
from pilot.vector_store.extract_tovec import get_vector_storelist, load_knownledge_from_doc
from pilot.configs.model_config import LOGDIR, VICUNA_MODEL_SERVER, LLM_MODEL
@ -48,6 +48,16 @@ priority = {
"vicuna-13b": "aaa"
}
def get_simlar(q):
docsearch = load_knownledge_from_doc()
docs = docsearch.similarity_search_with_score(q, k=1)
contents = [dc.page_content for dc, _ in docs]
return "\n".join(contents)
def gen_sqlgen_conversation(dbname):
mo = MySQLOperator(
**DB_SETTINGS
@ -150,6 +160,7 @@ def http_bot(state, db_selector, temperature, max_new_tokens, request: gr.Reques
yield (state, state.to_gradio_chatbot()) + (no_change_btn,) * 5
return
query = state.messages[-2][1]
if len(state.messages) == state.offset + 2:
# 第一轮对话需要加入提示Prompt
@ -158,11 +169,15 @@ def http_bot(state, db_selector, temperature, max_new_tokens, request: gr.Reques
new_state.conv_id = uuid.uuid4().hex
# prompt 中添加上下文提示
new_state.append_message(new_state.roles[0], gen_sqlgen_conversation(dbname) + state.messages[-2][1])
if db_selector:
new_state.append_message(new_state.roles[0], gen_sqlgen_conversation(dbname) + query)
new_state.append_message(new_state.roles[1], None)
state = new_state
if not db_selector:
state.append_message(new_state.roles[0], get_simlar(query) + query)
prompt = state.get_prompt()
skip_echo_len = len(prompt.replace("</s>", " ")) + 1
@ -237,6 +252,9 @@ pre {
"""
)
def change_tab(tab):
pass
def change_mode(mode):
if mode == "默认知识库对话":
return gr.update(visible=False)
@ -256,7 +274,6 @@ def build_single_model_ui():
The service is a research preview intended for non-commercial use only. subject to the model [License](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) of LLaMA
"""
vs_path, file_status, vs_list = gr.State(""), gr.State(""), gr.State()
state = gr.State()
gr.Markdown(notice_markdown, elem_id="notice_markdown")
@ -278,10 +295,10 @@ def build_single_model_ui():
interactive=True,
label="最大输出Token数",
)
tabs = gr.Tabs()
tabs = gr.Tabs()
with tabs:
with gr.TabItem("SQL生成与诊断", elem_id="SQL"):
# TODO A selector to choose database
# TODO A selector to choose database
with gr.Row(elem_id="db_selector"):
db_selector = gr.Dropdown(
label="请选择数据库",
@ -289,9 +306,8 @@ def build_single_model_ui():
value=dbs[0] if len(models) > 0 else "",
interactive=True,
show_label=True).style(container=False)
with gr.TabItem("知识问答", elem_id="QA"):
with gr.TabItem("知识问答", elem_id="QA"):
mode = gr.Radio(["默认知识库对话", "新增知识库"], show_label=False, value="默认知识库对话")
vs_setting = gr.Accordion("配置知识库", open=False)
mode.change(fn=change_mode, inputs=mode, outputs=vs_setting)
@ -331,9 +347,6 @@ def build_single_model_ui():
regenerate_btn = gr.Button(value="重新生成", interactive=False)
clear_btn = gr.Button(value="清理", interactive=False)
# QA 模式下清空数据库选项
if tabs.elem_id == "QA":
db_selector = ""
gr.Markdown(learn_more_markdown)

View File

@ -6,7 +6,7 @@ import os
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import Chroma
from pilot.model.vicuna_llm import VicunaEmbeddingLLM
from pilot.configs.model_config import VECTORE_PATH
from pilot.configs.model_config import VECTORE_PATH, DATASETS_DIR
from langchain.embeddings import HuggingFaceEmbeddings
embeddings = VicunaEmbeddingLLM()
@ -14,7 +14,7 @@ embeddings = VicunaEmbeddingLLM()
def knownledge_tovec(filename):
with open(filename, "r") as f:
knownledge = f.read()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
texts = text_splitter.split_text(knownledge)
docsearch = Chroma.from_texts(
@ -38,6 +38,33 @@ def knownledge_tovec_st(filename):
docsearch = Chroma.from_texts(texts, embeddings, metadatas=[{"source": str(i)} for i in range(len(texts))])
return docsearch
def load_knownledge_from_doc():
"""从数据集当中加载知识
# TODO 如果向量存储已经存在, 则无需初始化
"""
if not os.path.exists(DATASETS_DIR):
print("Not Exists Local DataSets, We will answers the Question use model default.")
from pilot.configs.model_config import LLM_MODEL_CONFIG
embeddings = HuggingFaceEmbeddings(model_name=LLM_MODEL_CONFIG["sentence-transforms"])
docs = []
files = os.listdir(DATASETS_DIR)
for file in files:
if not os.path.isdir(file):
with open(file, "r") as f:
doc = f.read()
docs.append(docs)
print(doc)
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_owerlap=0)
texts = text_splitter.split_text("\n".join(docs))
docsearch = Chroma.from_texts(texts, embeddings, metadatas=[{"source": str(i)} for i in range(len(texts))],
persist_directory=os.path.join(VECTORE_PATH, ".vectore"))
return docsearch
def get_vector_storelist():
if not os.path.exists(VECTORE_PATH):
return []