mirror of
https://github.com/csunny/DB-GPT.git
synced 2025-07-30 23:28:35 +00:00
load base knownledge
This commit is contained in:
parent
d9f5130db4
commit
529f077409
@ -8,7 +8,7 @@ ROOT_PATH = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__fi
|
||||
MODEL_PATH = os.path.join(ROOT_PATH, "models")
|
||||
VECTORE_PATH = os.path.join(ROOT_PATH, "vector_store")
|
||||
LOGDIR = os.path.join(ROOT_PATH, "logs")
|
||||
|
||||
DATASETS_DIR = os.path.join(ROOT_PATH, "datasets")
|
||||
|
||||
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
LLM_MODEL_CONFIG = {
|
||||
|
@ -12,7 +12,7 @@ import requests
|
||||
from urllib.parse import urljoin
|
||||
from pilot.configs.model_config import DB_SETTINGS
|
||||
from pilot.connections.mysql_conn import MySQLOperator
|
||||
from pilot.vector_store.extract_tovec import get_vector_storelist
|
||||
from pilot.vector_store.extract_tovec import get_vector_storelist, load_knownledge_from_doc
|
||||
|
||||
from pilot.configs.model_config import LOGDIR, VICUNA_MODEL_SERVER, LLM_MODEL
|
||||
|
||||
@ -48,6 +48,16 @@ priority = {
|
||||
"vicuna-13b": "aaa"
|
||||
}
|
||||
|
||||
def get_simlar(q):
|
||||
|
||||
docsearch = load_knownledge_from_doc()
|
||||
docs = docsearch.similarity_search_with_score(q, k=1)
|
||||
|
||||
contents = [dc.page_content for dc, _ in docs]
|
||||
return "\n".join(contents)
|
||||
|
||||
|
||||
|
||||
def gen_sqlgen_conversation(dbname):
|
||||
mo = MySQLOperator(
|
||||
**DB_SETTINGS
|
||||
@ -150,6 +160,7 @@ def http_bot(state, db_selector, temperature, max_new_tokens, request: gr.Reques
|
||||
yield (state, state.to_gradio_chatbot()) + (no_change_btn,) * 5
|
||||
return
|
||||
|
||||
query = state.messages[-2][1]
|
||||
if len(state.messages) == state.offset + 2:
|
||||
# 第一轮对话需要加入提示Prompt
|
||||
|
||||
@ -158,11 +169,15 @@ def http_bot(state, db_selector, temperature, max_new_tokens, request: gr.Reques
|
||||
new_state.conv_id = uuid.uuid4().hex
|
||||
|
||||
# prompt 中添加上下文提示
|
||||
new_state.append_message(new_state.roles[0], gen_sqlgen_conversation(dbname) + state.messages[-2][1])
|
||||
if db_selector:
|
||||
new_state.append_message(new_state.roles[0], gen_sqlgen_conversation(dbname) + query)
|
||||
|
||||
new_state.append_message(new_state.roles[1], None)
|
||||
state = new_state
|
||||
|
||||
|
||||
if not db_selector:
|
||||
state.append_message(new_state.roles[0], get_simlar(query) + query)
|
||||
|
||||
prompt = state.get_prompt()
|
||||
|
||||
skip_echo_len = len(prompt.replace("</s>", " ")) + 1
|
||||
@ -237,6 +252,9 @@ pre {
|
||||
"""
|
||||
)
|
||||
|
||||
def change_tab(tab):
|
||||
pass
|
||||
|
||||
def change_mode(mode):
|
||||
if mode == "默认知识库对话":
|
||||
return gr.update(visible=False)
|
||||
@ -256,7 +274,6 @@ def build_single_model_ui():
|
||||
The service is a research preview intended for non-commercial use only. subject to the model [License](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) of LLaMA
|
||||
"""
|
||||
|
||||
vs_path, file_status, vs_list = gr.State(""), gr.State(""), gr.State()
|
||||
state = gr.State()
|
||||
gr.Markdown(notice_markdown, elem_id="notice_markdown")
|
||||
|
||||
@ -278,10 +295,10 @@ def build_single_model_ui():
|
||||
interactive=True,
|
||||
label="最大输出Token数",
|
||||
)
|
||||
tabs = gr.Tabs()
|
||||
tabs = gr.Tabs()
|
||||
with tabs:
|
||||
with gr.TabItem("SQL生成与诊断", elem_id="SQL"):
|
||||
# TODO A selector to choose database
|
||||
# TODO A selector to choose database
|
||||
with gr.Row(elem_id="db_selector"):
|
||||
db_selector = gr.Dropdown(
|
||||
label="请选择数据库",
|
||||
@ -289,9 +306,8 @@ def build_single_model_ui():
|
||||
value=dbs[0] if len(models) > 0 else "",
|
||||
interactive=True,
|
||||
show_label=True).style(container=False)
|
||||
|
||||
with gr.TabItem("知识问答", elem_id="QA"):
|
||||
|
||||
with gr.TabItem("知识问答", elem_id="QA"):
|
||||
mode = gr.Radio(["默认知识库对话", "新增知识库"], show_label=False, value="默认知识库对话")
|
||||
vs_setting = gr.Accordion("配置知识库", open=False)
|
||||
mode.change(fn=change_mode, inputs=mode, outputs=vs_setting)
|
||||
@ -331,9 +347,6 @@ def build_single_model_ui():
|
||||
regenerate_btn = gr.Button(value="重新生成", interactive=False)
|
||||
clear_btn = gr.Button(value="清理", interactive=False)
|
||||
|
||||
# QA 模式下清空数据库选项
|
||||
if tabs.elem_id == "QA":
|
||||
db_selector = ""
|
||||
|
||||
gr.Markdown(learn_more_markdown)
|
||||
|
||||
|
@ -6,7 +6,7 @@ import os
|
||||
from langchain.text_splitter import CharacterTextSplitter
|
||||
from langchain.vectorstores import Chroma
|
||||
from pilot.model.vicuna_llm import VicunaEmbeddingLLM
|
||||
from pilot.configs.model_config import VECTORE_PATH
|
||||
from pilot.configs.model_config import VECTORE_PATH, DATASETS_DIR
|
||||
from langchain.embeddings import HuggingFaceEmbeddings
|
||||
|
||||
embeddings = VicunaEmbeddingLLM()
|
||||
@ -14,7 +14,7 @@ embeddings = VicunaEmbeddingLLM()
|
||||
def knownledge_tovec(filename):
|
||||
with open(filename, "r") as f:
|
||||
knownledge = f.read()
|
||||
|
||||
|
||||
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
|
||||
texts = text_splitter.split_text(knownledge)
|
||||
docsearch = Chroma.from_texts(
|
||||
@ -38,6 +38,33 @@ def knownledge_tovec_st(filename):
|
||||
docsearch = Chroma.from_texts(texts, embeddings, metadatas=[{"source": str(i)} for i in range(len(texts))])
|
||||
return docsearch
|
||||
|
||||
|
||||
def load_knownledge_from_doc():
|
||||
"""从数据集当中加载知识
|
||||
# TODO 如果向量存储已经存在, 则无需初始化
|
||||
"""
|
||||
|
||||
if not os.path.exists(DATASETS_DIR):
|
||||
print("Not Exists Local DataSets, We will answers the Question use model default.")
|
||||
|
||||
from pilot.configs.model_config import LLM_MODEL_CONFIG
|
||||
embeddings = HuggingFaceEmbeddings(model_name=LLM_MODEL_CONFIG["sentence-transforms"])
|
||||
|
||||
docs = []
|
||||
files = os.listdir(DATASETS_DIR)
|
||||
for file in files:
|
||||
if not os.path.isdir(file):
|
||||
with open(file, "r") as f:
|
||||
doc = f.read()
|
||||
docs.append(docs)
|
||||
|
||||
print(doc)
|
||||
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_owerlap=0)
|
||||
texts = text_splitter.split_text("\n".join(docs))
|
||||
docsearch = Chroma.from_texts(texts, embeddings, metadatas=[{"source": str(i)} for i in range(len(texts))],
|
||||
persist_directory=os.path.join(VECTORE_PATH, ".vectore"))
|
||||
return docsearch
|
||||
|
||||
def get_vector_storelist():
|
||||
if not os.path.exists(VECTORE_PATH):
|
||||
return []
|
||||
|
Loading…
Reference in New Issue
Block a user