fork file replace import

This commit is contained in:
csunny 2023-05-07 05:14:43 +08:00
parent 529f077409
commit 539e98f1dc
4 changed files with 144 additions and 16 deletions

View File

@ -3,6 +3,71 @@
import torch
@torch.inference_mode()
def generate_stream(model, tokenizer, params, device,
context_len=2048, stream_interval=2):
"""Fork from fastchat: https://github.com/lm-sys/FastChat/blob/main/fastchat/serve/inference.py """
prompt = params["prompt"]
l_prompt = len(prompt)
temperature = float(params.get("temperature", 1.0))
max_new_tokens = int(params.get("max_new_tokens", 256))
stop_str = params.get("stop", None)
input_ids = tokenizer(prompt).input_ids
output_ids = list(input_ids)
max_src_len = context_len - max_new_tokens - 8
input_ids = input_ids[-max_src_len:]
for i in range(max_new_tokens):
if i == 0:
out = model(
torch.as_tensor([input_ids], device=device), use_cache=True)
logits = out.logits
past_key_values = out.past_key_values
else:
attention_mask = torch.ones(
1, past_key_values[0][0].shape[-2] + 1, device=device)
out = model(input_ids=torch.as_tensor([[token]], device=device),
use_cache=True,
attention_mask=attention_mask,
past_key_values=past_key_values)
logits = out.logits
past_key_values = out.past_key_values
last_token_logits = logits[0][-1]
if device == "mps":
# Switch to CPU by avoiding some bugs in mps backend.
last_token_logits = last_token_logits.float().to("cpu")
if temperature < 1e-4:
token = int(torch.argmax(last_token_logits))
else:
probs = torch.softmax(last_token_logits / temperature, dim=-1)
token = int(torch.multinomial(probs, num_samples=1))
output_ids.append(token)
if token == tokenizer.eos_token_id:
stopped = True
else:
stopped = False
if i % stream_interval == 0 or i == max_new_tokens - 1 or stopped:
output = tokenizer.decode(output_ids, skip_special_tokens=True)
pos = output.rfind(stop_str, l_prompt)
if pos != -1:
output = output[:pos]
stopped = True
yield output
if stopped:
break
del past_key_values
@torch.inference_mode()
def generate_output(model, tokenizer, params, device, context_len=2048, stream_interval=2):
prompt = params["prompt"]

View File

@ -5,6 +5,7 @@ import torch
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
AutoModel
)
from fastchat.serve.compression import compress_module
@ -23,20 +24,39 @@ class ModerLoader:
"device_map": "auto",
}
def loader(self, load_8bit=False, debug=False):
tokenizer = AutoTokenizer.from_pretrained(self.model_path, use_fast=False)
model = AutoModelForCausalLM.from_pretrained(self.model_path, low_cpu_mem_usage=True, **self.kwargs)
def loader(self, num_gpus, load_8bit=False, debug=False):
if self.device == "cpu":
kwargs = {}
elif self.device == "cuda":
kwargs = {"torch_dtype": torch.float16}
if num_gpus == "auto":
kwargs["device_map"] = "auto"
else:
num_gpus = int(num_gpus)
if num_gpus != 1:
kwargs.update({
"device_map": "auto",
"max_memory": {i: "13GiB" for i in range(num_gpus)},
})
else:
raise ValueError(f"Invalid device: {self.device}")
if "chatglm" in self.model_path:
tokenizer = AutoTokenizer.from_pretrained(self.model_path, trust_remote_code=True)
model = AutoModel.from_pretrained(self.model_path, trust_remote_code=True).half().cuda()
else:
tokenizer = AutoTokenizer.from_pretrained(self.model_path, use_fast=False)
model = AutoModelForCausalLM.from_pretrained(self.model_path,
low_cpu_mem_usage=True, **kwargs)
if load_8bit:
compress_module(model, self.device)
if (self.device == "cuda" and num_gpus == 1):
model.to(self.device)
if debug:
print(model)
if load_8bit:
compress_module(model, self.device)
# if self.device == "cuda":
# model.to(self.device)
return model, tokenizer

View File

@ -7,10 +7,12 @@ import json
from typing import Optional, List
from fastapi import FastAPI, Request, BackgroundTasks
from fastapi.responses import StreamingResponse
from fastchat.serve.inference import generate_stream
from pilot.model.inference import generate_stream
from pydantic import BaseModel
from pilot.model.inference import generate_output, get_embeddings
from fastchat.serve.inference import load_model
from pilot.model.loader import ModerLoader
from pilot.configs.model_config import *
@ -20,9 +22,9 @@ model_path = LLM_MODEL_CONFIG[LLM_MODEL]
global_counter = 0
model_semaphore = None
# ml = ModerLoader(model_path=model_path)
# model, tokenizer = ml.loader(load_8bit=isload_8bit, debug=isdebug)
model, tokenizer = load_model(model_path=model_path, device=DEVICE, num_gpus=1, load_8bit=True, debug=False)
ml = ModerLoader(model_path=model_path)
model, tokenizer = ml.loader(num_gpus=1, load_8bit=ISLOAD_8BIT, debug=ISDEBUG)
#model, tokenizer = load_model(model_path=model_path, device=DEVICE, num_gpus=1, load_8bit=True, debug=False)
class ModelWorker:
def __init__(self):

View File

@ -0,0 +1,41 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
from langchain.prompts import PromptTemplate
from langchain.vectorstores import Chroma
from langchain.text_splitter import CharacterTextSplitter
from langchain.document_loaders import UnstructuredFileLoader, UnstructuredPDFLoader
VECTOR_SEARCH_TOP_K = 5
class BaseKnownLedgeQA:
llm: object = None
embeddings: object = None
top_k: int = VECTOR_SEARCH_TOP_K
def __init__(self) -> None:
pass
def init_vector_store(self):
pass
def load_knownlege(self):
pass
def _load_file(self, filename):
# 加载文件
if filename.lower().endswith(".pdf"):
loader = UnstructuredFileLoader(filename)
text_splitor = CharacterTextSplitter()
docs = loader.load_and_split(text_splitor)
else:
loader = UnstructuredFileLoader(filename, mode="elements")
text_splitor = CharacterTextSplitter()
docs = loader.load_and_split(text_splitor)
return docs
def _load_from_url(self, url):
pass