mirror of
https://github.com/csunny/DB-GPT.git
synced 2025-07-30 15:21:02 +00:00
feat:embedding_engine add text_splitter param
This commit is contained in:
parent
30adbaf4fd
commit
56c1947eda
@ -19,6 +19,7 @@ you will prepare embedding models from huggingface
|
||||
Notice make sure you have install git-lfs
|
||||
```{tip}
|
||||
git clone https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
|
||||
|
||||
git clone https://huggingface.co/GanymedeNil/text2vec-large-chinese
|
||||
```
|
||||
version:
|
||||
|
@ -72,6 +72,24 @@ eg: git clone https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
|
||||
vector_store_config=vector_store_config)
|
||||
embedding_engine.knowledge_embedding()
|
||||
|
||||
If you want to add your text_splitter, do this:
|
||||
|
||||
::
|
||||
|
||||
url = "https://db-gpt.readthedocs.io/en/latest/getting_started/getting_started.html"
|
||||
|
||||
text_splitter = RecursiveCharacterTextSplitter(
|
||||
chunk_size=100, chunk_overlap=50
|
||||
)
|
||||
embedding_engine = EmbeddingEngine(
|
||||
knowledge_source=url,
|
||||
knowledge_type=KnowledgeType.URL.value,
|
||||
model_name=embedding_model,
|
||||
vector_store_config=vector_store_config,
|
||||
text_splitter=text_splitter
|
||||
)
|
||||
|
||||
|
||||
4.init Document Type EmbeddingEngine api and embedding your document into vector store in your code.
|
||||
Document type can be .txt, .pdf, .md, .doc, .ppt.
|
||||
|
||||
|
@ -1,49 +0,0 @@
|
||||
# Knownledge based qa
|
||||
|
||||
Chat with your own knowledge is a very interesting thing. In the usage scenarios of this chapter, we will introduce how to build your own knowledge base through the knowledge base API. Firstly, building a knowledge store can currently be initialized by executing "python tool/knowledge_init.py" to initialize the content of your own knowledge base, which was introduced in the previous knowledge base module. Of course, you can also call our provided knowledge embedding API to store knowledge.
|
||||
|
||||
|
||||
We currently support many document formats: txt, pdf, md, html, doc, ppt, and url.
|
||||
```
|
||||
vector_store_config = {
|
||||
"vector_store_name": name
|
||||
}
|
||||
|
||||
file_path = "your file path"
|
||||
|
||||
embedding_engine = EmbeddingEngine(file_path=file_path, model_name=LLM_MODEL_CONFIG["text2vec"], vector_store_config=vector_store_config)
|
||||
|
||||
embedding_engine.knowledge_embedding()
|
||||
|
||||
```
|
||||
|
||||
Now we currently support vector databases: Chroma (default) and Milvus. You can switch between them by modifying the "VECTOR_STORE_TYPE" field in the .env file.
|
||||
```
|
||||
#*******************************************************************#
|
||||
#** VECTOR STORE SETTINGS **#
|
||||
#*******************************************************************#
|
||||
VECTOR_STORE_TYPE=Chroma
|
||||
#MILVUS_URL=127.0.0.1
|
||||
#MILVUS_PORT=19530
|
||||
```
|
||||
|
||||
|
||||
Below is an example of using the knowledge base API to query knowledge:
|
||||
|
||||
```
|
||||
vector_store_config = {
|
||||
"vector_store_name": your_name,
|
||||
"vector_store_type": "Chroma",
|
||||
"chroma_persist_path": "your_persist_dir",
|
||||
}
|
||||
|
||||
integrate
|
||||
|
||||
query = "your query"
|
||||
|
||||
embedding_model = "your_model_path/all-MiniLM-L6-v2"
|
||||
|
||||
embedding_engine = EmbeddingEngine(knowledge_source=url, knowledge_type=KnowledgeType.URL.value, model_name=embedding_model, vector_store_config=vector_store_config)
|
||||
|
||||
embedding_engine.similar_search(query, 10)
|
||||
```
|
@ -2,6 +2,7 @@ from typing import Optional
|
||||
|
||||
from chromadb.errors import NotEnoughElementsException
|
||||
from langchain.embeddings import HuggingFaceEmbeddings
|
||||
from langchain.text_splitter import TextSplitter
|
||||
|
||||
from pilot.embedding_engine.knowledge_type import get_knowledge_embedding, KnowledgeType
|
||||
from pilot.vector_store.connector import VectorStoreConnector
|
||||
@ -21,6 +22,7 @@ class EmbeddingEngine:
|
||||
vector_store_config,
|
||||
knowledge_type: Optional[str] = KnowledgeType.DOCUMENT.value,
|
||||
knowledge_source: Optional[str] = None,
|
||||
text_splitter: Optional[TextSplitter] = None,
|
||||
):
|
||||
"""Initialize with knowledge embedding client, model_name, vector_store_config, knowledge_type, knowledge_source"""
|
||||
self.knowledge_source = knowledge_source
|
||||
@ -29,6 +31,7 @@ class EmbeddingEngine:
|
||||
self.knowledge_type = knowledge_type
|
||||
self.embeddings = HuggingFaceEmbeddings(model_name=self.model_name)
|
||||
self.vector_store_config["embeddings"] = self.embeddings
|
||||
self.text_splitter = text_splitter
|
||||
|
||||
def knowledge_embedding(self):
|
||||
"""source embedding is chain process.read->text_split->data_process->index_store"""
|
||||
@ -47,7 +50,10 @@ class EmbeddingEngine:
|
||||
|
||||
def init_knowledge_embedding(self):
|
||||
return get_knowledge_embedding(
|
||||
self.knowledge_type, self.knowledge_source, self.vector_store_config
|
||||
self.knowledge_type,
|
||||
self.knowledge_source,
|
||||
self.vector_store_config,
|
||||
self.text_splitter,
|
||||
)
|
||||
|
||||
def similar_search(self, text, topk):
|
||||
|
@ -40,7 +40,9 @@ class KnowledgeType(Enum):
|
||||
YOUTUBE = "YOUTUBE"
|
||||
|
||||
|
||||
def get_knowledge_embedding(knowledge_type, knowledge_source, vector_store_config):
|
||||
def get_knowledge_embedding(
|
||||
knowledge_type, knowledge_source, vector_store_config, text_splitter
|
||||
):
|
||||
match knowledge_type:
|
||||
case KnowledgeType.DOCUMENT.value:
|
||||
extension = "." + knowledge_source.rsplit(".", 1)[-1]
|
||||
@ -49,6 +51,7 @@ def get_knowledge_embedding(knowledge_type, knowledge_source, vector_store_confi
|
||||
embedding = knowledge_class(
|
||||
knowledge_source,
|
||||
vector_store_config=vector_store_config,
|
||||
text_splitter=text_splitter,
|
||||
**knowledge_args,
|
||||
)
|
||||
return embedding
|
||||
@ -57,12 +60,14 @@ def get_knowledge_embedding(knowledge_type, knowledge_source, vector_store_confi
|
||||
embedding = URLEmbedding(
|
||||
file_path=knowledge_source,
|
||||
vector_store_config=vector_store_config,
|
||||
text_splitter=text_splitter,
|
||||
)
|
||||
return embedding
|
||||
case KnowledgeType.TEXT.value:
|
||||
embedding = StringEmbedding(
|
||||
file_path=knowledge_source,
|
||||
vector_store_config=vector_store_config,
|
||||
text_splitter=text_splitter,
|
||||
)
|
||||
return embedding
|
||||
case KnowledgeType.OSS.value:
|
||||
|
@ -1,6 +1,8 @@
|
||||
import threading
|
||||
from datetime import datetime
|
||||
|
||||
from langchain.text_splitter import RecursiveCharacterTextSplitter, SpacyTextSplitter
|
||||
|
||||
from pilot.configs.config import Config
|
||||
from pilot.configs.model_config import LLM_MODEL_CONFIG, KNOWLEDGE_UPLOAD_ROOT_PATH
|
||||
from pilot.embedding_engine.embedding_engine import EmbeddingEngine
|
||||
@ -122,6 +124,24 @@ class KnowledgeService:
|
||||
raise Exception(
|
||||
f" doc:{doc.doc_name} status is {doc.status}, can not sync"
|
||||
)
|
||||
|
||||
if CFG.LANGUAGE == "en":
|
||||
text_splitter = RecursiveCharacterTextSplitter(
|
||||
chunk_size=CFG.KNOWLEDGE_CHUNK_SIZE,
|
||||
chunk_overlap=20,
|
||||
length_function=len,
|
||||
)
|
||||
else:
|
||||
try:
|
||||
text_splitter = SpacyTextSplitter(
|
||||
pipeline="zh_core_web_sm",
|
||||
chunk_size=CFG.KNOWLEDGE_CHUNK_SIZE,
|
||||
chunk_overlap=100,
|
||||
)
|
||||
except Exception:
|
||||
text_splitter = RecursiveCharacterTextSplitter(
|
||||
chunk_size=CFG.KNOWLEDGE_CHUNK_SIZE, chunk_overlap=50
|
||||
)
|
||||
client = EmbeddingEngine(
|
||||
knowledge_source=doc.content,
|
||||
knowledge_type=doc.doc_type.upper(),
|
||||
@ -131,6 +151,7 @@ class KnowledgeService:
|
||||
"vector_store_type": CFG.VECTOR_STORE_TYPE,
|
||||
"chroma_persist_path": KNOWLEDGE_UPLOAD_ROOT_PATH,
|
||||
},
|
||||
text_splitter=text_splitter,
|
||||
)
|
||||
chunk_docs = client.read()
|
||||
# update document status
|
||||
|
Loading…
Reference in New Issue
Block a user