update config

This commit is contained in:
csunny
2023-05-07 13:36:24 +08:00
parent cbe024ebde
commit 63586fc6a3
2 changed files with 10 additions and 9 deletions

View File

@@ -7,11 +7,12 @@ import nltk
ROOT_PATH = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
MODEL_PATH = os.path.join(ROOT_PATH, "models")
VECTORE_PATH = os.path.join(ROOT_PATH, "vector_store")
PILOT_PATH = os.path.join(ROOT_PATH, "pilot")
VECTORE_PATH = os.path.join(PILOT_PATH, "vector_store")
LOGDIR = os.path.join(ROOT_PATH, "logs")
DATASETS_DIR = os.path.join(ROOT_PATH, "pilot/datasets")
DATASETS_DIR = os.path.join(PILOT_PATH, "datasets")
nltk.data.path = [os.path.join(ROOT_PATH, "pilot/nltk_data")] + nltk.data.path
nltk.data.path = [os.path.join(PILOT_PATH, "nltk_data")] + nltk.data.path
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
LLM_MODEL_CONFIG = {

View File

@@ -28,16 +28,18 @@ class KnownLedge2Vector:
def init_vector_store(self):
documents = self.load_knownlege()
persist_dir = os.path.join(VECTORE_PATH, ".vectordb")
print("向量数据库持久化地址: ", persist_dir)
if os.path.exists(persist_dir):
# 从本地持久化文件中Load
pass
vector_store = Chroma(persist_directory=persist_dir, embedding_function=self.embeddings)
vector_store.add_documents(documents=documents)
else:
# 重新初始化
vector_store = Chroma.from_documents(documents=documents,
embedding=self.embeddings,
persist_directory=persist_dir)
vector_store.persist()
vector_store = None
return persist_dir
def load_knownlege(self):
@@ -45,7 +47,6 @@ class KnownLedge2Vector:
for root, _, files in os.walk(DATASETS_DIR, topdown=False):
for file in files:
filename = os.path.join(root, file)
print(filename)
docs = self._load_file(filename)
# 更新metadata数据
new_docs = []
@@ -53,8 +54,7 @@ class KnownLedge2Vector:
doc.metadata = {"source": doc.metadata["source"].replace(DATASETS_DIR, "")}
print("文档2向量初始化中, 请稍等...", doc.metadata)
new_docs.append(doc)
docments += docs
docments += new_docs
return docments
def _load_file(self, filename):
@@ -75,5 +75,5 @@ class KnownLedge2Vector:
if __name__ == "__main__":
k2v = KnownLedge2Vector()
k2v.load_knownlege()
k2v.init_vector_store()