mirror of
https://github.com/csunny/DB-GPT.git
synced 2025-09-16 14:40:56 +00:00
feat:embedding api
1.embedding_engine add source_reader param 2.docs update 3.fix chroma exit bug
This commit is contained in:
@@ -2,7 +2,7 @@ from typing import Dict, List, Optional
|
||||
|
||||
from langchain.document_loaders import CSVLoader
|
||||
from langchain.schema import Document
|
||||
from langchain.text_splitter import TextSplitter
|
||||
from langchain.text_splitter import TextSplitter, SpacyTextSplitter, RecursiveCharacterTextSplitter
|
||||
|
||||
from pilot.embedding_engine import SourceEmbedding, register
|
||||
|
||||
@@ -14,19 +14,34 @@ class CSVEmbedding(SourceEmbedding):
|
||||
self,
|
||||
file_path,
|
||||
vector_store_config,
|
||||
source_reader: Optional = None,
|
||||
text_splitter: Optional[TextSplitter] = None,
|
||||
):
|
||||
"""Initialize with csv path."""
|
||||
super().__init__(file_path, vector_store_config, text_splitter=None)
|
||||
super().__init__(file_path, vector_store_config, source_reader=None, text_splitter=None)
|
||||
self.file_path = file_path
|
||||
self.vector_store_config = vector_store_config
|
||||
self.source_reader = source_reader or None
|
||||
self.text_splitter = text_splitter or None
|
||||
|
||||
@register
|
||||
def read(self):
|
||||
"""Load from csv path."""
|
||||
loader = CSVLoader(file_path=self.file_path)
|
||||
return loader.load()
|
||||
if self.source_reader is None:
|
||||
self.source_reader = CSVLoader(self.file_path)
|
||||
if self.text_splitter is None:
|
||||
try:
|
||||
self.text_splitter = SpacyTextSplitter(
|
||||
pipeline="zh_core_web_sm",
|
||||
chunk_size=100,
|
||||
chunk_overlap=100,
|
||||
)
|
||||
except Exception:
|
||||
self.text_splitter = RecursiveCharacterTextSplitter(
|
||||
chunk_size=100, chunk_overlap=50
|
||||
)
|
||||
|
||||
return self.source_reader.load_and_split(self.text_splitter)
|
||||
|
||||
@register
|
||||
def data_process(self, documents: List[Document]):
|
||||
|
@@ -22,6 +22,7 @@ class EmbeddingEngine:
|
||||
vector_store_config,
|
||||
knowledge_type: Optional[str] = KnowledgeType.DOCUMENT.value,
|
||||
knowledge_source: Optional[str] = None,
|
||||
source_reader: Optional = None,
|
||||
text_splitter: Optional[TextSplitter] = None,
|
||||
):
|
||||
"""Initialize with knowledge embedding client, model_name, vector_store_config, knowledge_type, knowledge_source"""
|
||||
@@ -31,6 +32,7 @@ class EmbeddingEngine:
|
||||
self.knowledge_type = knowledge_type
|
||||
self.embeddings = HuggingFaceEmbeddings(model_name=self.model_name)
|
||||
self.vector_store_config["embeddings"] = self.embeddings
|
||||
self.source_reader = source_reader
|
||||
self.text_splitter = text_splitter
|
||||
|
||||
def knowledge_embedding(self):
|
||||
@@ -53,6 +55,7 @@ class EmbeddingEngine:
|
||||
self.knowledge_type,
|
||||
self.knowledge_source,
|
||||
self.vector_store_config,
|
||||
self.source_reader,
|
||||
self.text_splitter,
|
||||
)
|
||||
|
||||
|
@@ -41,7 +41,7 @@ class KnowledgeType(Enum):
|
||||
|
||||
|
||||
def get_knowledge_embedding(
|
||||
knowledge_type, knowledge_source, vector_store_config, text_splitter
|
||||
knowledge_type, knowledge_source, vector_store_config, source_reader, text_splitter
|
||||
):
|
||||
match knowledge_type:
|
||||
case KnowledgeType.DOCUMENT.value:
|
||||
@@ -51,6 +51,7 @@ def get_knowledge_embedding(
|
||||
embedding = knowledge_class(
|
||||
knowledge_source,
|
||||
vector_store_config=vector_store_config,
|
||||
source_reader=source_reader,
|
||||
text_splitter=text_splitter,
|
||||
**knowledge_args,
|
||||
)
|
||||
@@ -60,6 +61,7 @@ def get_knowledge_embedding(
|
||||
embedding = URLEmbedding(
|
||||
file_path=knowledge_source,
|
||||
vector_store_config=vector_store_config,
|
||||
source_reader=source_reader,
|
||||
text_splitter=text_splitter,
|
||||
)
|
||||
return embedding
|
||||
@@ -67,6 +69,7 @@ def get_knowledge_embedding(
|
||||
embedding = StringEmbedding(
|
||||
file_path=knowledge_source,
|
||||
vector_store_config=vector_store_config,
|
||||
source_reader=source_reader,
|
||||
text_splitter=text_splitter,
|
||||
)
|
||||
return embedding
|
||||
|
@@ -24,19 +24,21 @@ class MarkdownEmbedding(SourceEmbedding):
|
||||
self,
|
||||
file_path,
|
||||
vector_store_config,
|
||||
source_reader: Optional = None,
|
||||
text_splitter: Optional[TextSplitter] = None,
|
||||
):
|
||||
"""Initialize raw text word path."""
|
||||
super().__init__(file_path, vector_store_config, text_splitter=None)
|
||||
super().__init__(file_path, vector_store_config, source_reader=None, text_splitter=None)
|
||||
self.file_path = file_path
|
||||
self.vector_store_config = vector_store_config
|
||||
self.source_reader = source_reader or None
|
||||
self.text_splitter = text_splitter or None
|
||||
# self.encoding = encoding
|
||||
|
||||
@register
|
||||
def read(self):
|
||||
"""Load from markdown path."""
|
||||
loader = EncodeTextLoader(self.file_path)
|
||||
if self.source_reader is None:
|
||||
self.source_reader = EncodeTextLoader(self.file_path)
|
||||
if self.text_splitter is None:
|
||||
try:
|
||||
self.text_splitter = SpacyTextSplitter(
|
||||
@@ -49,7 +51,7 @@ class MarkdownEmbedding(SourceEmbedding):
|
||||
chunk_size=100, chunk_overlap=50
|
||||
)
|
||||
|
||||
return loader.load_and_split(self.text_splitter)
|
||||
return self.source_reader.load_and_split(self.text_splitter)
|
||||
|
||||
@register
|
||||
def data_process(self, documents: List[Document]):
|
||||
|
@@ -20,18 +20,21 @@ class PDFEmbedding(SourceEmbedding):
|
||||
self,
|
||||
file_path,
|
||||
vector_store_config,
|
||||
source_reader: Optional = None,
|
||||
text_splitter: Optional[TextSplitter] = None,
|
||||
):
|
||||
"""Initialize pdf word path."""
|
||||
super().__init__(file_path, vector_store_config, text_splitter=None)
|
||||
super().__init__(file_path, vector_store_config, source_reader=None, text_splitter=None)
|
||||
self.file_path = file_path
|
||||
self.vector_store_config = vector_store_config
|
||||
self.source_reader = source_reader or None
|
||||
self.text_splitter = text_splitter or None
|
||||
|
||||
@register
|
||||
def read(self):
|
||||
"""Load from pdf path."""
|
||||
loader = PyPDFLoader(self.file_path)
|
||||
if self.source_reader is None:
|
||||
self.source_reader = PyPDFLoader(self.file_path)
|
||||
if self.text_splitter is None:
|
||||
try:
|
||||
self.text_splitter = SpacyTextSplitter(
|
||||
@@ -44,7 +47,7 @@ class PDFEmbedding(SourceEmbedding):
|
||||
chunk_size=100, chunk_overlap=50
|
||||
)
|
||||
|
||||
return loader.load_and_split(self.text_splitter)
|
||||
return self.source_reader.load_and_split(self.text_splitter)
|
||||
|
||||
@register
|
||||
def data_process(self, documents: List[Document]):
|
||||
|
@@ -20,18 +20,21 @@ class PPTEmbedding(SourceEmbedding):
|
||||
self,
|
||||
file_path,
|
||||
vector_store_config,
|
||||
source_reader: Optional = None,
|
||||
text_splitter: Optional[TextSplitter] = None,
|
||||
):
|
||||
"""Initialize ppt word path."""
|
||||
super().__init__(file_path, vector_store_config, text_splitter=None)
|
||||
super().__init__(file_path, vector_store_config, source_reader=None, text_splitter=None)
|
||||
self.file_path = file_path
|
||||
self.vector_store_config = vector_store_config
|
||||
self.source_reader = source_reader or None
|
||||
self.text_splitter = text_splitter or None
|
||||
|
||||
@register
|
||||
def read(self):
|
||||
"""Load from ppt path."""
|
||||
loader = UnstructuredPowerPointLoader(self.file_path)
|
||||
if self.source_reader is None:
|
||||
self.source_reader = UnstructuredPowerPointLoader(self.file_path)
|
||||
if self.text_splitter is None:
|
||||
try:
|
||||
self.text_splitter = SpacyTextSplitter(
|
||||
@@ -44,7 +47,7 @@ class PPTEmbedding(SourceEmbedding):
|
||||
chunk_size=100, chunk_overlap=50
|
||||
)
|
||||
|
||||
return loader.load_and_split(self.text_splitter)
|
||||
return self.source_reader.load_and_split(self.text_splitter)
|
||||
|
||||
@register
|
||||
def data_process(self, documents: List[Document]):
|
||||
|
@@ -26,12 +26,14 @@ class SourceEmbedding(ABC):
|
||||
self,
|
||||
file_path,
|
||||
vector_store_config: {},
|
||||
source_reader: Optional = None,
|
||||
text_splitter: Optional[TextSplitter] = None,
|
||||
embedding_args: Optional[Dict] = None,
|
||||
):
|
||||
"""Initialize with Loader url, model_name, vector_store_config"""
|
||||
self.file_path = file_path
|
||||
self.vector_store_config = vector_store_config
|
||||
self.source_reader = source_reader or None
|
||||
self.text_splitter = text_splitter or None
|
||||
self.embedding_args = embedding_args
|
||||
self.embeddings = vector_store_config["embeddings"]
|
||||
|
@@ -1,7 +1,7 @@
|
||||
from typing import List, Optional
|
||||
|
||||
from langchain.schema import Document
|
||||
from langchain.text_splitter import TextSplitter
|
||||
from langchain.text_splitter import TextSplitter, SpacyTextSplitter, RecursiveCharacterTextSplitter
|
||||
|
||||
from pilot.embedding_engine import SourceEmbedding, register
|
||||
|
||||
@@ -13,19 +13,35 @@ class StringEmbedding(SourceEmbedding):
|
||||
self,
|
||||
file_path,
|
||||
vector_store_config,
|
||||
source_reader: Optional = None,
|
||||
text_splitter: Optional[TextSplitter] = None,
|
||||
):
|
||||
"""Initialize raw text word path."""
|
||||
super().__init__(file_path=file_path, vector_store_config=vector_store_config)
|
||||
super().__init__(file_path=file_path, vector_store_config=vector_store_config, source_reader=None, text_splitter=None)
|
||||
self.file_path = file_path
|
||||
self.vector_store_config = vector_store_config
|
||||
self.source_reader = source_reader or None
|
||||
self.text_splitter = text_splitter or None
|
||||
|
||||
@register
|
||||
def read(self):
|
||||
"""Load from String path."""
|
||||
metadata = {"source": "raw text"}
|
||||
return [Document(page_content=self.file_path, metadata=metadata)]
|
||||
docs = [Document(page_content=self.file_path, metadata=metadata)]
|
||||
if self.text_splitter is None:
|
||||
try:
|
||||
self.text_splitter = SpacyTextSplitter(
|
||||
pipeline="zh_core_web_sm",
|
||||
chunk_size=100,
|
||||
chunk_overlap=100,
|
||||
)
|
||||
except Exception:
|
||||
self.text_splitter = RecursiveCharacterTextSplitter(
|
||||
chunk_size=100, chunk_overlap=50
|
||||
)
|
||||
|
||||
return self.text_splitter.split_documents(docs)
|
||||
|
||||
|
||||
@register
|
||||
def data_process(self, documents: List[Document]):
|
||||
|
@@ -19,18 +19,22 @@ class URLEmbedding(SourceEmbedding):
|
||||
self,
|
||||
file_path,
|
||||
vector_store_config,
|
||||
source_reader: Optional = None,
|
||||
text_splitter: Optional[TextSplitter] = None,
|
||||
):
|
||||
"""Initialize url word path."""
|
||||
super().__init__(file_path, vector_store_config, text_splitter=None)
|
||||
super().__init__(file_path, vector_store_config, source_reader=None, text_splitter=None)
|
||||
self.file_path = file_path
|
||||
self.vector_store_config = vector_store_config
|
||||
self.source_reader = source_reader or None
|
||||
self.text_splitter = text_splitter or None
|
||||
|
||||
|
||||
@register
|
||||
def read(self):
|
||||
"""Load from url path."""
|
||||
loader = WebBaseLoader(web_path=self.file_path)
|
||||
if self.source_reader is None:
|
||||
self.source_reader = WebBaseLoader(web_path=self.file_path)
|
||||
if self.text_splitter is None:
|
||||
try:
|
||||
self.text_splitter = SpacyTextSplitter(
|
||||
@@ -43,7 +47,7 @@ class URLEmbedding(SourceEmbedding):
|
||||
chunk_size=100, chunk_overlap=50
|
||||
)
|
||||
|
||||
return loader.load_and_split(self.text_splitter)
|
||||
return self.source_reader.load_and_split(self.text_splitter)
|
||||
|
||||
@register
|
||||
def data_process(self, documents: List[Document]):
|
||||
|
@@ -20,18 +20,21 @@ class WordEmbedding(SourceEmbedding):
|
||||
self,
|
||||
file_path,
|
||||
vector_store_config,
|
||||
source_reader: Optional = None,
|
||||
text_splitter: Optional[TextSplitter] = None,
|
||||
):
|
||||
"""Initialize with word path."""
|
||||
super().__init__(file_path, vector_store_config, text_splitter=None)
|
||||
super().__init__(file_path, vector_store_config, source_reader=None, text_splitter=None)
|
||||
self.file_path = file_path
|
||||
self.vector_store_config = vector_store_config
|
||||
self.source_reader = source_reader or None
|
||||
self.text_splitter = text_splitter or None
|
||||
|
||||
@register
|
||||
def read(self):
|
||||
"""Load from word path."""
|
||||
loader = UnstructuredWordDocumentLoader(self.file_path)
|
||||
if self.source_reader is None:
|
||||
self.source_reader = UnstructuredWordDocumentLoader(self.file_path)
|
||||
if self.text_splitter is None:
|
||||
try:
|
||||
self.text_splitter = SpacyTextSplitter(
|
||||
@@ -44,7 +47,7 @@ class WordEmbedding(SourceEmbedding):
|
||||
chunk_size=100, chunk_overlap=50
|
||||
)
|
||||
|
||||
return loader.load_and_split(self.text_splitter)
|
||||
return self.source_reader.load_and_split(self.text_splitter)
|
||||
|
||||
@register
|
||||
def data_process(self, documents: List[Document]):
|
||||
|
@@ -1,3 +1,4 @@
|
||||
import atexit
|
||||
import traceback
|
||||
import os
|
||||
import shutil
|
||||
@@ -36,7 +37,7 @@ CFG = Config()
|
||||
logger = build_logger("webserver", LOGDIR + "webserver.log")
|
||||
|
||||
|
||||
def signal_handler(sig, frame):
|
||||
def signal_handler():
|
||||
print("in order to avoid chroma db atexit problem")
|
||||
os._exit(0)
|
||||
|
||||
@@ -96,7 +97,6 @@ if __name__ == "__main__":
|
||||
action="store_true",
|
||||
help="enable light mode",
|
||||
)
|
||||
signal.signal(signal.SIGINT, signal_handler)
|
||||
|
||||
# init server config
|
||||
args = parser.parse_args()
|
||||
@@ -114,3 +114,4 @@ if __name__ == "__main__":
|
||||
import uvicorn
|
||||
|
||||
uvicorn.run(app, host="0.0.0.0", port=args.port)
|
||||
signal.signal(signal.SIGINT, signal_handler())
|
||||
|
@@ -124,7 +124,6 @@ class DBSummaryClient:
|
||||
"chroma_persist_path": KNOWLEDGE_UPLOAD_ROOT_PATH,
|
||||
}
|
||||
knowledge_embedding_client = EmbeddingEngine(
|
||||
file_path="",
|
||||
model_name=LLM_MODEL_CONFIG[CFG.EMBEDDING_MODEL],
|
||||
vector_store_config=vector_store_config,
|
||||
)
|
||||
|
Reference in New Issue
Block a user