feat:embedding api

1.embedding_engine add source_reader param
2.docs update
3.fix chroma exit bug
This commit is contained in:
aries_ckt
2023-07-13 15:45:25 +08:00
parent 56c1947eda
commit 6404bfe63a
15 changed files with 100 additions and 36 deletions

View File

@@ -2,7 +2,7 @@ from typing import Dict, List, Optional
from langchain.document_loaders import CSVLoader
from langchain.schema import Document
from langchain.text_splitter import TextSplitter
from langchain.text_splitter import TextSplitter, SpacyTextSplitter, RecursiveCharacterTextSplitter
from pilot.embedding_engine import SourceEmbedding, register
@@ -14,19 +14,34 @@ class CSVEmbedding(SourceEmbedding):
self,
file_path,
vector_store_config,
source_reader: Optional = None,
text_splitter: Optional[TextSplitter] = None,
):
"""Initialize with csv path."""
super().__init__(file_path, vector_store_config, text_splitter=None)
super().__init__(file_path, vector_store_config, source_reader=None, text_splitter=None)
self.file_path = file_path
self.vector_store_config = vector_store_config
self.source_reader = source_reader or None
self.text_splitter = text_splitter or None
@register
def read(self):
"""Load from csv path."""
loader = CSVLoader(file_path=self.file_path)
return loader.load()
if self.source_reader is None:
self.source_reader = CSVLoader(self.file_path)
if self.text_splitter is None:
try:
self.text_splitter = SpacyTextSplitter(
pipeline="zh_core_web_sm",
chunk_size=100,
chunk_overlap=100,
)
except Exception:
self.text_splitter = RecursiveCharacterTextSplitter(
chunk_size=100, chunk_overlap=50
)
return self.source_reader.load_and_split(self.text_splitter)
@register
def data_process(self, documents: List[Document]):

View File

@@ -22,6 +22,7 @@ class EmbeddingEngine:
vector_store_config,
knowledge_type: Optional[str] = KnowledgeType.DOCUMENT.value,
knowledge_source: Optional[str] = None,
source_reader: Optional = None,
text_splitter: Optional[TextSplitter] = None,
):
"""Initialize with knowledge embedding client, model_name, vector_store_config, knowledge_type, knowledge_source"""
@@ -31,6 +32,7 @@ class EmbeddingEngine:
self.knowledge_type = knowledge_type
self.embeddings = HuggingFaceEmbeddings(model_name=self.model_name)
self.vector_store_config["embeddings"] = self.embeddings
self.source_reader = source_reader
self.text_splitter = text_splitter
def knowledge_embedding(self):
@@ -53,6 +55,7 @@ class EmbeddingEngine:
self.knowledge_type,
self.knowledge_source,
self.vector_store_config,
self.source_reader,
self.text_splitter,
)

View File

@@ -41,7 +41,7 @@ class KnowledgeType(Enum):
def get_knowledge_embedding(
knowledge_type, knowledge_source, vector_store_config, text_splitter
knowledge_type, knowledge_source, vector_store_config, source_reader, text_splitter
):
match knowledge_type:
case KnowledgeType.DOCUMENT.value:
@@ -51,6 +51,7 @@ def get_knowledge_embedding(
embedding = knowledge_class(
knowledge_source,
vector_store_config=vector_store_config,
source_reader=source_reader,
text_splitter=text_splitter,
**knowledge_args,
)
@@ -60,6 +61,7 @@ def get_knowledge_embedding(
embedding = URLEmbedding(
file_path=knowledge_source,
vector_store_config=vector_store_config,
source_reader=source_reader,
text_splitter=text_splitter,
)
return embedding
@@ -67,6 +69,7 @@ def get_knowledge_embedding(
embedding = StringEmbedding(
file_path=knowledge_source,
vector_store_config=vector_store_config,
source_reader=source_reader,
text_splitter=text_splitter,
)
return embedding

View File

@@ -24,19 +24,21 @@ class MarkdownEmbedding(SourceEmbedding):
self,
file_path,
vector_store_config,
source_reader: Optional = None,
text_splitter: Optional[TextSplitter] = None,
):
"""Initialize raw text word path."""
super().__init__(file_path, vector_store_config, text_splitter=None)
super().__init__(file_path, vector_store_config, source_reader=None, text_splitter=None)
self.file_path = file_path
self.vector_store_config = vector_store_config
self.source_reader = source_reader or None
self.text_splitter = text_splitter or None
# self.encoding = encoding
@register
def read(self):
"""Load from markdown path."""
loader = EncodeTextLoader(self.file_path)
if self.source_reader is None:
self.source_reader = EncodeTextLoader(self.file_path)
if self.text_splitter is None:
try:
self.text_splitter = SpacyTextSplitter(
@@ -49,7 +51,7 @@ class MarkdownEmbedding(SourceEmbedding):
chunk_size=100, chunk_overlap=50
)
return loader.load_and_split(self.text_splitter)
return self.source_reader.load_and_split(self.text_splitter)
@register
def data_process(self, documents: List[Document]):

View File

@@ -20,18 +20,21 @@ class PDFEmbedding(SourceEmbedding):
self,
file_path,
vector_store_config,
source_reader: Optional = None,
text_splitter: Optional[TextSplitter] = None,
):
"""Initialize pdf word path."""
super().__init__(file_path, vector_store_config, text_splitter=None)
super().__init__(file_path, vector_store_config, source_reader=None, text_splitter=None)
self.file_path = file_path
self.vector_store_config = vector_store_config
self.source_reader = source_reader or None
self.text_splitter = text_splitter or None
@register
def read(self):
"""Load from pdf path."""
loader = PyPDFLoader(self.file_path)
if self.source_reader is None:
self.source_reader = PyPDFLoader(self.file_path)
if self.text_splitter is None:
try:
self.text_splitter = SpacyTextSplitter(
@@ -44,7 +47,7 @@ class PDFEmbedding(SourceEmbedding):
chunk_size=100, chunk_overlap=50
)
return loader.load_and_split(self.text_splitter)
return self.source_reader.load_and_split(self.text_splitter)
@register
def data_process(self, documents: List[Document]):

View File

@@ -20,18 +20,21 @@ class PPTEmbedding(SourceEmbedding):
self,
file_path,
vector_store_config,
source_reader: Optional = None,
text_splitter: Optional[TextSplitter] = None,
):
"""Initialize ppt word path."""
super().__init__(file_path, vector_store_config, text_splitter=None)
super().__init__(file_path, vector_store_config, source_reader=None, text_splitter=None)
self.file_path = file_path
self.vector_store_config = vector_store_config
self.source_reader = source_reader or None
self.text_splitter = text_splitter or None
@register
def read(self):
"""Load from ppt path."""
loader = UnstructuredPowerPointLoader(self.file_path)
if self.source_reader is None:
self.source_reader = UnstructuredPowerPointLoader(self.file_path)
if self.text_splitter is None:
try:
self.text_splitter = SpacyTextSplitter(
@@ -44,7 +47,7 @@ class PPTEmbedding(SourceEmbedding):
chunk_size=100, chunk_overlap=50
)
return loader.load_and_split(self.text_splitter)
return self.source_reader.load_and_split(self.text_splitter)
@register
def data_process(self, documents: List[Document]):

View File

@@ -26,12 +26,14 @@ class SourceEmbedding(ABC):
self,
file_path,
vector_store_config: {},
source_reader: Optional = None,
text_splitter: Optional[TextSplitter] = None,
embedding_args: Optional[Dict] = None,
):
"""Initialize with Loader url, model_name, vector_store_config"""
self.file_path = file_path
self.vector_store_config = vector_store_config
self.source_reader = source_reader or None
self.text_splitter = text_splitter or None
self.embedding_args = embedding_args
self.embeddings = vector_store_config["embeddings"]

View File

@@ -1,7 +1,7 @@
from typing import List, Optional
from langchain.schema import Document
from langchain.text_splitter import TextSplitter
from langchain.text_splitter import TextSplitter, SpacyTextSplitter, RecursiveCharacterTextSplitter
from pilot.embedding_engine import SourceEmbedding, register
@@ -13,19 +13,35 @@ class StringEmbedding(SourceEmbedding):
self,
file_path,
vector_store_config,
source_reader: Optional = None,
text_splitter: Optional[TextSplitter] = None,
):
"""Initialize raw text word path."""
super().__init__(file_path=file_path, vector_store_config=vector_store_config)
super().__init__(file_path=file_path, vector_store_config=vector_store_config, source_reader=None, text_splitter=None)
self.file_path = file_path
self.vector_store_config = vector_store_config
self.source_reader = source_reader or None
self.text_splitter = text_splitter or None
@register
def read(self):
"""Load from String path."""
metadata = {"source": "raw text"}
return [Document(page_content=self.file_path, metadata=metadata)]
docs = [Document(page_content=self.file_path, metadata=metadata)]
if self.text_splitter is None:
try:
self.text_splitter = SpacyTextSplitter(
pipeline="zh_core_web_sm",
chunk_size=100,
chunk_overlap=100,
)
except Exception:
self.text_splitter = RecursiveCharacterTextSplitter(
chunk_size=100, chunk_overlap=50
)
return self.text_splitter.split_documents(docs)
@register
def data_process(self, documents: List[Document]):

View File

@@ -19,18 +19,22 @@ class URLEmbedding(SourceEmbedding):
self,
file_path,
vector_store_config,
source_reader: Optional = None,
text_splitter: Optional[TextSplitter] = None,
):
"""Initialize url word path."""
super().__init__(file_path, vector_store_config, text_splitter=None)
super().__init__(file_path, vector_store_config, source_reader=None, text_splitter=None)
self.file_path = file_path
self.vector_store_config = vector_store_config
self.source_reader = source_reader or None
self.text_splitter = text_splitter or None
@register
def read(self):
"""Load from url path."""
loader = WebBaseLoader(web_path=self.file_path)
if self.source_reader is None:
self.source_reader = WebBaseLoader(web_path=self.file_path)
if self.text_splitter is None:
try:
self.text_splitter = SpacyTextSplitter(
@@ -43,7 +47,7 @@ class URLEmbedding(SourceEmbedding):
chunk_size=100, chunk_overlap=50
)
return loader.load_and_split(self.text_splitter)
return self.source_reader.load_and_split(self.text_splitter)
@register
def data_process(self, documents: List[Document]):

View File

@@ -20,18 +20,21 @@ class WordEmbedding(SourceEmbedding):
self,
file_path,
vector_store_config,
source_reader: Optional = None,
text_splitter: Optional[TextSplitter] = None,
):
"""Initialize with word path."""
super().__init__(file_path, vector_store_config, text_splitter=None)
super().__init__(file_path, vector_store_config, source_reader=None, text_splitter=None)
self.file_path = file_path
self.vector_store_config = vector_store_config
self.source_reader = source_reader or None
self.text_splitter = text_splitter or None
@register
def read(self):
"""Load from word path."""
loader = UnstructuredWordDocumentLoader(self.file_path)
if self.source_reader is None:
self.source_reader = UnstructuredWordDocumentLoader(self.file_path)
if self.text_splitter is None:
try:
self.text_splitter = SpacyTextSplitter(
@@ -44,7 +47,7 @@ class WordEmbedding(SourceEmbedding):
chunk_size=100, chunk_overlap=50
)
return loader.load_and_split(self.text_splitter)
return self.source_reader.load_and_split(self.text_splitter)
@register
def data_process(self, documents: List[Document]):

View File

@@ -1,3 +1,4 @@
import atexit
import traceback
import os
import shutil
@@ -36,7 +37,7 @@ CFG = Config()
logger = build_logger("webserver", LOGDIR + "webserver.log")
def signal_handler(sig, frame):
def signal_handler():
print("in order to avoid chroma db atexit problem")
os._exit(0)
@@ -96,7 +97,6 @@ if __name__ == "__main__":
action="store_true",
help="enable light mode",
)
signal.signal(signal.SIGINT, signal_handler)
# init server config
args = parser.parse_args()
@@ -114,3 +114,4 @@ if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=args.port)
signal.signal(signal.SIGINT, signal_handler())

View File

@@ -124,7 +124,6 @@ class DBSummaryClient:
"chroma_persist_path": KNOWLEDGE_UPLOAD_ROOT_PATH,
}
knowledge_embedding_client = EmbeddingEngine(
file_path="",
model_name=LLM_MODEL_CONFIG[CFG.EMBEDDING_MODEL],
vector_store_config=vector_store_config,
)