mirror of
https://github.com/csunny/DB-GPT.git
synced 2025-07-29 14:57:35 +00:00
doc:add llm management and deployment documents
This commit is contained in:
parent
806612ad7d
commit
69f68fffb2
BIN
docs/_static/img/muti-model-cluster-overview.png
vendored
BIN
docs/_static/img/muti-model-cluster-overview.png
vendored
Binary file not shown.
Before Width: | Height: | Size: 361 KiB After Width: | Height: | Size: 668 KiB |
@ -19,4 +19,5 @@ DB-GPT product is a Web application that you can chat database, chat knowledge,
|
||||
./application/chatdb/chatdb.md
|
||||
./application/kbqa/kbqa.md
|
||||
./application/dashboard/dashboard.md
|
||||
./application/chatexcel/chatexcel.md
|
||||
./application/chatexcel/chatexcel.md
|
||||
./application/model/model.md
|
61
docs/getting_started/application/model/model.md
Normal file
61
docs/getting_started/application/model/model.md
Normal file
@ -0,0 +1,61 @@
|
||||
Model Management
|
||||
==================================
|
||||

|
||||
DB-GPT Product Provides LLM Model Management in web interface.Including LLM Create, Start and Stop.
|
||||
Now DB-GPT support LLMs:
|
||||
```{admonition} Support LLMs
|
||||
* Multi LLMs Support, Supports multiple large language models, currently supporting
|
||||
* [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf)
|
||||
* [baichuan2-7b/baichuan2-13b](https://huggingface.co/baichuan-inc)
|
||||
* [internlm/internlm-chat-7b](https://huggingface.co/internlm/internlm-chat-7b)
|
||||
* [Qwen/Qwen-7B-Chat/Qwen-14B-Chat](https://huggingface.co/Qwen/)
|
||||
* [Vicuna](https://huggingface.co/Tribbiani/vicuna-13b)
|
||||
* [BlinkDL/RWKV-4-Raven](https://huggingface.co/BlinkDL/rwkv-4-raven)
|
||||
* [camel-ai/CAMEL-13B-Combined-Data](https://huggingface.co/camel-ai/CAMEL-13B-Combined-Data)
|
||||
* [databricks/dolly-v2-12b](https://huggingface.co/databricks/dolly-v2-12b)
|
||||
* [FreedomIntelligence/phoenix-inst-chat-7b](https://huggingface.co/FreedomIntelligence/phoenix-inst-chat-7b)
|
||||
* [h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-7b](https://huggingface.co/h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-7b)
|
||||
* [lcw99/polyglot-ko-12.8b-chang-instruct-chat](https://huggingface.co/lcw99/polyglot-ko-12.8b-chang-instruct-chat)
|
||||
* [lmsys/fastchat-t5-3b-v1.0](https://huggingface.co/lmsys/fastchat-t5)
|
||||
* [mosaicml/mpt-7b-chat](https://huggingface.co/mosaicml/mpt-7b-chat)
|
||||
* [Neutralzz/BiLLa-7B-SFT](https://huggingface.co/Neutralzz/BiLLa-7B-SFT)
|
||||
* [nomic-ai/gpt4all-13b-snoozy](https://huggingface.co/nomic-ai/gpt4all-13b-snoozy)
|
||||
* [NousResearch/Nous-Hermes-13b](https://huggingface.co/NousResearch/Nous-Hermes-13b)
|
||||
* [openaccess-ai-collective/manticore-13b-chat-pyg](https://huggingface.co/openaccess-ai-collective/manticore-13b-chat-pyg)
|
||||
* [OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5](https://huggingface.co/OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5)
|
||||
* [project-baize/baize-v2-7b](https://huggingface.co/project-baize/baize-v2-7b)
|
||||
* [Salesforce/codet5p-6b](https://huggingface.co/Salesforce/codet5p-6b)
|
||||
* [StabilityAI/stablelm-tuned-alpha-7b](https://huggingface.co/stabilityai/stablelm-tuned-alpha-7b)
|
||||
* [THUDM/chatglm-6b](https://huggingface.co/THUDM/chatglm-6b)
|
||||
* [THUDM/chatglm2-6b](https://huggingface.co/THUDM/chatglm2-6b)
|
||||
* [tiiuae/falcon-40b](https://huggingface.co/tiiuae/falcon-40b)
|
||||
* [timdettmers/guanaco-33b-merged](https://huggingface.co/timdettmers/guanaco-33b-merged)
|
||||
* [togethercomputer/RedPajama-INCITE-7B-Chat](https://huggingface.co/togethercomputer/RedPajama-INCITE-7B-Chat)
|
||||
* [WizardLM/WizardLM-13B-V1.0](https://huggingface.co/WizardLM/WizardLM-13B-V1.0)
|
||||
* [WizardLM/WizardCoder-15B-V1.0](https://huggingface.co/WizardLM/WizardCoder-15B-V1.0)
|
||||
* [baichuan-inc/baichuan-7B](https://huggingface.co/baichuan-inc/baichuan-7B)
|
||||
* [HuggingFaceH4/starchat-beta](https://huggingface.co/HuggingFaceH4/starchat-beta)
|
||||
* [FlagAlpha/Llama2-Chinese-13b-Chat](https://huggingface.co/FlagAlpha/Llama2-Chinese-13b-Chat)
|
||||
* [BAAI/AquilaChat-7B](https://huggingface.co/BAAI/AquilaChat-7B)
|
||||
* [all models of OpenOrca](https://huggingface.co/Open-Orca)
|
||||
* [Spicyboros](https://huggingface.co/jondurbin/spicyboros-7b-2.2?not-for-all-audiences=true) + [airoboros 2.2](https://huggingface.co/jondurbin/airoboros-l2-13b-2.2)
|
||||
* [VMware's OpenLLaMa OpenInstruct](https://huggingface.co/VMware/open-llama-7b-open-instruct)
|
||||
|
||||
* Support API Proxy LLMs
|
||||
* [ChatGPT](https://api.openai.com/)
|
||||
* [Tongyi](https://www.aliyun.com/product/dashscope)
|
||||
* [Wenxin](https://cloud.baidu.com/product/wenxinworkshop?track=dingbutonglan)
|
||||
* [ChatGLM](http://open.bigmodel.cn/)
|
||||
```
|
||||
### Create && Start LLM Model
|
||||
```{note}
|
||||
Make sure your LLM Model file is downloaded or LLM Model Proxy api service is ready.
|
||||
```
|
||||

|
||||
When create success, you can see:
|
||||

|
||||
Then you can choose and switch llm model service to chat.
|
||||

|
||||
### Stop LLM Model
|
||||

|
||||
|
@ -1,5 +1,8 @@
|
||||
Cluster deployment
|
||||
LLM Deployment
|
||||
==================================
|
||||
In the exploration and implementation of AI model applications, it can be challenging to directly integrate with model services. Currently, there is no established standard for deploying large models, and new models and inference methods are constantly being released. As a result, a significant amount of time is spent adapting to the ever-changing underlying model environment. This, to some extent, hinders the exploration and implementation of AI model applications.
|
||||
|
||||
We divide the deployment of large models into two layers: the model inference layer and the model deployment layer. The model inference layer corresponds to model inference frameworks such as vLLM, TGI, and TensorRT. The model deployment layer interfaces with the inference layer below and provides model serving capabilities above. We refer to this layer's framework as the model deployment framework. Positioned above the inference frameworks, the model deployment framework offers capabilities such as multiple model instances, multiple inference frameworks, multiple service protocols, multi-cloud support, automatic scaling, and observability.
|
||||
|
||||
In order to deploy DB-GPT to multiple nodes, you can deploy a cluster. The cluster architecture diagram is as follows:
|
||||
|
||||
@ -7,8 +10,64 @@ In order to deploy DB-GPT to multiple nodes, you can deploy a cluster. The clust
|
||||
|
||||
<img src="../../../_static/img/muti-model-cluster-overview.png" />
|
||||
|
||||
Design of DB-GPT:
|
||||
-----------------
|
||||
|
||||
DB-GPT is designed as a llm deployment framework, taking into account the above design objectives.
|
||||
|
||||
- Support for llm and inference frameworks: DB-GPT supports the simultaneous deployment of llm and is compatible with multiple inference frameworks such as vLLM, TGI, and TensorRT.
|
||||
|
||||
- Scalability and stability: DB-GPT has good scalability, allowing easy addition of new models and inference frameworks. It utilizes a distributed architecture and automatic scaling capabilities to handle high concurrency and large-scale requests, ensuring system stability.
|
||||
|
||||
- Performance optimization: DB-GPT undergoes performance optimization to provide fast and efficient model inference capabilities, preventing it from becoming a performance bottleneck during inference.
|
||||
|
||||
- Management and observability capabilities: DB-GPT offers management and monitoring functionalities, including model deployment and configuration management, performance monitoring, and logging. It can generate reports on model performance and service status to promptly identify and resolve issues.
|
||||
|
||||
- Lightweight: DB-GPT is designed as a lightweight framework to improve deployment efficiency and save resources. It employs efficient algorithms and optimization strategies to minimize resource consumption while maintaining sufficient functionality and performance.
|
||||
|
||||
1.Support for multiple models and inference frameworks
|
||||
-----------------
|
||||
The field of large models is evolving rapidly, with new models being released and new methods being proposed for model training and inference. We believe that this situation will continue for some time.
|
||||
|
||||
For most users exploring and implementing AI applications, this situation has its pros and cons. The benefits are apparent, as it brings new opportunities and advancements. However, one drawback is that users may feel compelled to constantly try and explore new models and inference frameworks.
|
||||
|
||||
In DB-GPT, seamless support is provided for FastChat, vLLM, and llama.cpp. In theory, any model supported by these frameworks is also supported by DB-GPT. If you have requirements for faster inference speed and concurrency, you can directly use vLLM. If you want good inference performance on CPU or Apple's M1/M2 chips, you can use llama.cpp. Additionally, DB-GPT also supports various proxy models from OpenAI, Azure OpenAI, Google BARD, Wenxin Yiyan, Tongyi Qianwen, and Zhipu AI, among others.
|
||||
|
||||
2.Have good scalability and stability
|
||||
-----------------
|
||||
A comprehensive model deployment framework consists of several components: the Model Worker, which directly interfaces with the underlying inference frameworks; the Model Controller, which manages and maintains multiple model components; and the Model API, which provides external model serving capabilities.
|
||||
|
||||
The Model Worker plays a crucial role and needs to be highly extensible. It can be specialized for deploying large language models, embedding models, or other types of models. The choice of Model Worker depends on the deployment environment, such as a regular physical server environment, a Kubernetes environment, or specific cloud environments provided by various cloud service providers.
|
||||
|
||||
Having different Model Worker options allows users to select the most suitable one based on their specific requirements and infrastructure. This flexibility enables efficient deployment and utilization of models across different environments.
|
||||
|
||||
The Model Controller, responsible for managing model metadata, also needs to be scalable. Different deployment environments and model management requirements may call for different choices of Model Controllers.
|
||||
|
||||
Furthermore, I believe that model serving shares many similarities with traditional microservices. In microservices, a service can have multiple instances, and all instances are registered in a central registry. Service consumers retrieve the list of instances based on the service name from the registry and select a specific instance for invocation using a load balancing strategy.
|
||||
|
||||
Similarly, in model deployment, a model can have multiple instances, and all instances can be registered in a model registry. Model service consumers retrieve the list of instances based on the model name from the registry and select a specific instance for invocation using a model-specific load balancing strategy.
|
||||
|
||||
Introducing a model registry, responsible for storing model instance metadata, enables such an architecture. The model registry can leverage existing service registries used in microservices (such as Nacos, Eureka, etcd, Consul, etc.) as implementations. This ensures high availability of the entire deployment system.
|
||||
|
||||
3.High performance for framework.
|
||||
------------------
|
||||
and optimization are complex tasks, and inappropriate framework designs can increase this complexity. In our view, to ensure that the deployment framework does not lag behind in terms of performance, there are two main areas of focus:
|
||||
|
||||
Avoid excessive encapsulation: The more encapsulation and longer the chain, the more challenging it becomes to identify performance issues.
|
||||
|
||||
High-performance communication design: High-performance communication involves various aspects that cannot be elaborated in detail here. However, considering that Python occupies a prominent position in current AIGC applications, asynchronous interfaces are crucial for service performance in Python. Therefore, the model serving layer should only provide asynchronous interfaces and be compatible with the layers that interface with the model inference framework. If the model inference framework offers asynchronous interfaces, direct integration should be implemented. Otherwise, synchronous-to-asynchronous task conversion should be used to provide support.
|
||||
|
||||
4.Management and monitoring capabilities.
|
||||
------------------
|
||||
In the exploration or production implementation of AIGC (Artificial Intelligence and General Computing) applications, it is important for the model deployment system to have certain management capabilities. This involves controlling the deployed model instances through APIs or command-line interfaces, such as for online/offline management, restarting, and debugging.
|
||||
|
||||
Observability is a crucial capability in production systems, and I believe it is equally, if not more, important in AIGC applications. This is because user experiences and interactions with the system are more complex. In addition to traditional observability metrics, we are also interested in user input information and corresponding contextual information, which specific model instance and parameters were invoked, the content and response time of model outputs, user feedback, and more.
|
||||
|
||||
By analyzing this information, we can identify performance bottlenecks in model services and gather user experience data (e.g., response latency, problem resolution, and user satisfaction extracted from user content). These insights serve as important foundations for further optimizing the entire application.
|
||||
|
||||
* On :ref:`Deploying on standalone mode <standalone-index>`. Standalone Deployment.
|
||||
* On :ref:`Deploying on cluster mode <local-cluster-index>`. Cluster Deployment.
|
||||
|
||||
* On :ref:`Deploying on local machine <local-cluster-index>`. Local cluster deployment.
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 2
|
||||
@ -16,4 +75,5 @@ In order to deploy DB-GPT to multiple nodes, you can deploy a cluster. The clust
|
||||
:name: cluster_deploy
|
||||
:hidden:
|
||||
|
||||
./vms/standalone.md
|
||||
./vms/index.md
|
||||
|
@ -1,4 +1,4 @@
|
||||
Local cluster deployment
|
||||
Cluster Deployment
|
||||
==================================
|
||||
(local-cluster-index)=
|
||||
## Model cluster deployment
|
||||
|
@ -6,8 +6,19 @@ This tutorial gives you a quick walkthrough about use DB-GPT with you environmen
|
||||
|
||||
To get started, install DB-GPT with the following steps.
|
||||
|
||||
### 1. Hardware Requirements
|
||||
As our project has the ability to achieve ChatGPT performance of over 85%, there are certain hardware requirements. However, overall, the project can be deployed and used on consumer-grade graphics cards. The specific hardware requirements for deployment are as follows:
|
||||
### 1. Hardware Requirements
|
||||
DB-GPT can be deployed on servers with low hardware requirements or on servers with high hardware requirements.
|
||||
|
||||
##### Low hardware requirements
|
||||
The low hardware requirements mode is suitable for integrating with third-party LLM services' APIs, such as OpenAI, Tongyi, Wenxin, or Llama.cpp.
|
||||
|
||||
DB-GPT provides set proxy api to support LLM api.
|
||||
|
||||
As our project has the ability to achieve ChatGPT performance of over 85%,
|
||||
|
||||
##### High hardware requirements
|
||||
The high hardware requirements mode is suitable for independently deploying LLM services, such as Llama series models, Baichuan, ChatGLM, Vicuna, and other private LLM service.
|
||||
there are certain hardware requirements. However, overall, the project can be deployed and used on consumer-grade graphics cards. The specific hardware requirements for deployment are as follows:
|
||||
|
||||
| GPU | VRAM Size | Performance |
|
||||
|----------|-----------| ------------------------------------------- |
|
||||
@ -16,7 +27,7 @@ As our project has the ability to achieve ChatGPT performance of over 85%, there
|
||||
| V100 | 16 GB | Conversation inference possible, noticeable stutter |
|
||||
| T4 | 16 GB | Conversation inference possible, noticeable stutter |
|
||||
|
||||
if your VRAM Size is not enough, DB-GPT supported 8-bit quantization and 4-bit quantization.
|
||||
If your VRAM Size is not enough, DB-GPT supported 8-bit quantization and 4-bit quantization.
|
||||
|
||||
Here are some of the VRAM size usage of the models we tested in some common scenarios.
|
||||
|
||||
@ -64,7 +75,7 @@ Notice make sure you have install git-lfs
|
||||
|
||||
centos:yum install git-lfs
|
||||
|
||||
ubuntu:app-get install git-lfs
|
||||
ubuntu:apt-get install git-lfs
|
||||
|
||||
macos:brew install git-lfs
|
||||
```
|
||||
|
@ -0,0 +1,346 @@
|
||||
# SOME DESCRIPTIVE TITLE.
|
||||
# Copyright (C) 2023, csunny
|
||||
# This file is distributed under the same license as the DB-GPT package.
|
||||
# FIRST AUTHOR <EMAIL@ADDRESS>, 2023.
|
||||
#
|
||||
#, fuzzy
|
||||
msgid ""
|
||||
msgstr ""
|
||||
"Project-Id-Version: DB-GPT 👏👏 0.3.9\n"
|
||||
"Report-Msgid-Bugs-To: \n"
|
||||
"POT-Creation-Date: 2023-10-17 19:39+0800\n"
|
||||
"PO-Revision-Date: YEAR-MO-DA HO:MI+ZONE\n"
|
||||
"Last-Translator: FULL NAME <EMAIL@ADDRESS>\n"
|
||||
"Language: zh_CN\n"
|
||||
"Language-Team: zh_CN <LL@li.org>\n"
|
||||
"Plural-Forms: nplurals=1; plural=0;\n"
|
||||
"MIME-Version: 1.0\n"
|
||||
"Content-Type: text/plain; charset=utf-8\n"
|
||||
"Content-Transfer-Encoding: 8bit\n"
|
||||
"Generated-By: Babel 2.12.1\n"
|
||||
|
||||
#: ../../getting_started/application/model/model.md:1
|
||||
#: 9d942556958a4a83ba09229f08774e18
|
||||
msgid "Model Management"
|
||||
msgstr "模型服务管理"
|
||||
|
||||
#: ../../getting_started/application/model/model.md:3
|
||||
#: 5b8688af589b4ad1ab6fb0ec8a3a664f
|
||||
msgid ""
|
||||
" DB-GPT Product "
|
||||
"Provides LLM Model Management in web interface.Including LLM Create, "
|
||||
"Start and Stop. Now DB-GPT support LLMs:"
|
||||
msgstr " DB-GPT "
|
||||
"在web界面上提供模型管理能力.包括模型创建、启动、停止。目前支持的模型:"
|
||||
|
||||
#: ../../getting_started/application/model/model.md:3
|
||||
#: 023da40dc5334f93948f429b1360ff50
|
||||
msgid "model"
|
||||
msgstr "model"
|
||||
|
||||
#: ../../getting_started/application/model/model.md:6
|
||||
#: 77fbd490f31946f3af627a6575b04f95
|
||||
msgid "Support LLMs"
|
||||
msgstr "支持的模型"
|
||||
|
||||
#: ../../getting_started/application/model/model.md:7
|
||||
#: 1fa23499c6bd4a498880f007341601e3
|
||||
msgid ""
|
||||
"Multi LLMs Support, Supports multiple large language models, currently "
|
||||
"supporting"
|
||||
msgstr "支持的模型类型:"
|
||||
|
||||
#: ../../getting_started/application/model/model.md:8
|
||||
#: 20ad38e471c241ab9f162db9acfdbefa
|
||||
msgid ""
|
||||
"[meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2"
|
||||
"-7b-chat-hf)"
|
||||
msgstr ""
|
||||
|
||||
#: ../../getting_started/application/model/model.md:9
|
||||
#: 1984188d04d74e7e93cdae6c8f1e00a8
|
||||
msgid "[baichuan2-7b/baichuan2-13b](https://huggingface.co/baichuan-inc)"
|
||||
msgstr ""
|
||||
|
||||
#: ../../getting_started/application/model/model.md:10
|
||||
#: 3b4aa596176241ca94a9c023edf911b8
|
||||
msgid ""
|
||||
"[internlm/internlm-chat-7b](https://huggingface.co/internlm/internlm-"
|
||||
"chat-7b)"
|
||||
msgstr ""
|
||||
|
||||
#: ../../getting_started/application/model/model.md:11
|
||||
#: 2608358ee0284d26b64b18ca86c584c5
|
||||
msgid "[Qwen/Qwen-7B-Chat/Qwen-14B-Chat](https://huggingface.co/Qwen/)"
|
||||
msgstr ""
|
||||
|
||||
#: ../../getting_started/application/model/model.md:12
|
||||
#: 0153627d59fb4268bfd2b8f2be0f8257
|
||||
msgid "[Vicuna](https://huggingface.co/Tribbiani/vicuna-13b)"
|
||||
msgstr ""
|
||||
|
||||
#: ../../getting_started/application/model/model.md:13
|
||||
#: 930768d5e2ca4c9891d81ed9d6e4ad8d
|
||||
msgid "[BlinkDL/RWKV-4-Raven](https://huggingface.co/BlinkDL/rwkv-4-raven)"
|
||||
msgstr ""
|
||||
|
||||
#: ../../getting_started/application/model/model.md:14
|
||||
#: 2b4ab4bf8b604ba082c382bd8d4df40c
|
||||
msgid ""
|
||||
"[camel-ai/CAMEL-13B-Combined-Data](https://huggingface.co/camel-ai/CAMEL-"
|
||||
"13B-Combined-Data)"
|
||||
msgstr ""
|
||||
|
||||
#: ../../getting_started/application/model/model.md:15
|
||||
#: a9b65b74c53d464988399baba8d35684
|
||||
msgid "[databricks/dolly-v2-12b](https://huggingface.co/databricks/dolly-v2-12b)"
|
||||
msgstr ""
|
||||
|
||||
#: ../../getting_started/application/model/model.md:16
|
||||
#: 96703db7e5764b998b87f3dc8932745b
|
||||
msgid ""
|
||||
"[FreedomIntelligence/phoenix-inst-chat-"
|
||||
"7b](https://huggingface.co/FreedomIntelligence/phoenix-inst-chat-7b)"
|
||||
msgstr ""
|
||||
|
||||
#: ../../getting_started/application/model/model.md:17
|
||||
#: de76d7426b4846d495aa8631ce0d9d20
|
||||
msgid ""
|
||||
"[h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-"
|
||||
"7b](https://huggingface.co/h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-7b)"
|
||||
msgstr ""
|
||||
|
||||
#: ../../getting_started/application/model/model.md:18
|
||||
#: 7b49bcb8879b4ab4bf5f458709c3d695
|
||||
msgid ""
|
||||
"[lcw99/polyglot-ko-12.8b-chang-instruct-"
|
||||
"chat](https://huggingface.co/lcw99/polyglot-ko-12.8b-chang-instruct-chat)"
|
||||
msgstr ""
|
||||
|
||||
#: ../../getting_started/application/model/model.md:19
|
||||
#: 1ec742759fee4fbf98cc2839c72f70d9
|
||||
msgid "[lmsys/fastchat-t5-3b-v1.0](https://huggingface.co/lmsys/fastchat-t5)"
|
||||
msgstr ""
|
||||
|
||||
#: ../../getting_started/application/model/model.md:20
|
||||
#: bc1a8be505684b728e6fb7f758d75ae2
|
||||
msgid "[mosaicml/mpt-7b-chat](https://huggingface.co/mosaicml/mpt-7b-chat)"
|
||||
msgstr ""
|
||||
|
||||
#: ../../getting_started/application/model/model.md:21
|
||||
#: 41496816f052446da7364d39839f5135
|
||||
msgid "[Neutralzz/BiLLa-7B-SFT](https://huggingface.co/Neutralzz/BiLLa-7B-SFT)"
|
||||
msgstr ""
|
||||
|
||||
#: ../../getting_started/application/model/model.md:22
|
||||
#: 35ecfef506e040a8bac2102c28b977dd
|
||||
msgid ""
|
||||
"[nomic-ai/gpt4all-13b-snoozy](https://huggingface.co/nomic-ai/gpt4all-"
|
||||
"13b-snoozy)"
|
||||
msgstr ""
|
||||
|
||||
#: ../../getting_started/application/model/model.md:23
|
||||
#: 1d8704b20f2c4dc5a8974ab813139a62
|
||||
msgid ""
|
||||
"[NousResearch/Nous-Hermes-13b](https://huggingface.co/NousResearch/Nous-"
|
||||
"Hermes-13b)"
|
||||
msgstr ""
|
||||
|
||||
#: ../../getting_started/application/model/model.md:24
|
||||
#: a9a04ac4211f4001912073668b5baf60
|
||||
msgid ""
|
||||
"[openaccess-ai-collective/manticore-13b-chat-pyg](https://huggingface.co"
|
||||
"/openaccess-ai-collective/manticore-13b-chat-pyg)"
|
||||
msgstr ""
|
||||
|
||||
#: ../../getting_started/application/model/model.md:25
|
||||
#: 0c1106b0e03a41c98b03dc17baa1298b
|
||||
msgid ""
|
||||
"[OpenAssistant/oasst-sft-4-pythia-12b-"
|
||||
"epoch-3.5](https://huggingface.co/OpenAssistant/oasst-sft-4-pythia-12b-"
|
||||
"epoch-3.5)"
|
||||
msgstr ""
|
||||
|
||||
#: ../../getting_started/application/model/model.md:26
|
||||
#: b7bccd9805914aeba74685d837fa367c
|
||||
msgid ""
|
||||
"[project-baize/baize-v2-7b](https://huggingface.co/project-"
|
||||
"baize/baize-v2-7b)"
|
||||
msgstr ""
|
||||
|
||||
#: ../../getting_started/application/model/model.md:27
|
||||
#: 522805e911364c6ebdf7e56d674a7378
|
||||
msgid "[Salesforce/codet5p-6b](https://huggingface.co/Salesforce/codet5p-6b)"
|
||||
msgstr ""
|
||||
|
||||
#: ../../getting_started/application/model/model.md:28
|
||||
#: 19571aa2347347dabdc03fe1d4656be7
|
||||
msgid ""
|
||||
"[StabilityAI/stablelm-tuned-alpha-7b](https://huggingface.co/stabilityai"
|
||||
"/stablelm-tuned-alpha-7b)"
|
||||
msgstr ""
|
||||
|
||||
#: ../../getting_started/application/model/model.md:29
|
||||
#: fba42e0373e743b08c0c49899ab970b9
|
||||
msgid "[THUDM/chatglm-6b](https://huggingface.co/THUDM/chatglm-6b)"
|
||||
msgstr ""
|
||||
|
||||
#: ../../getting_started/application/model/model.md:30
|
||||
#: d518e63d906e41909c95d62c441aa746
|
||||
msgid "[THUDM/chatglm2-6b](https://huggingface.co/THUDM/chatglm2-6b)"
|
||||
msgstr ""
|
||||
|
||||
#: ../../getting_started/application/model/model.md:31
|
||||
#: 48d6eacaabd14992be49428c3d5d205a
|
||||
msgid "[tiiuae/falcon-40b](https://huggingface.co/tiiuae/falcon-40b)"
|
||||
msgstr ""
|
||||
|
||||
#: ../../getting_started/application/model/model.md:32
|
||||
#: 6594a1859162405bb3df610d0982f71e
|
||||
msgid ""
|
||||
"[timdettmers/guanaco-33b-merged](https://huggingface.co/timdettmers"
|
||||
"/guanaco-33b-merged)"
|
||||
msgstr ""
|
||||
|
||||
#: ../../getting_started/application/model/model.md:33
|
||||
#: b146beb3e6d043c38dd6211bddc9f0b4
|
||||
msgid ""
|
||||
"[togethercomputer/RedPajama-INCITE-7B-"
|
||||
"Chat](https://huggingface.co/togethercomputer/RedPajama-INCITE-7B-Chat)"
|
||||
msgstr ""
|
||||
|
||||
#: ../../getting_started/application/model/model.md:34
|
||||
#: 65f4089de9eb4056b90212efc1995db7
|
||||
msgid ""
|
||||
"[WizardLM/WizardLM-13B-V1.0](https://huggingface.co/WizardLM/WizardLM-"
|
||||
"13B-V1.0)"
|
||||
msgstr ""
|
||||
|
||||
#: ../../getting_started/application/model/model.md:35
|
||||
#: 6184f69597b9446daa869d03b8de2f55
|
||||
msgid ""
|
||||
"[WizardLM/WizardCoder-15B-V1.0](https://huggingface.co/WizardLM"
|
||||
"/WizardCoder-15B-V1.0)"
|
||||
msgstr ""
|
||||
|
||||
#: ../../getting_started/application/model/model.md:36
|
||||
#: 74c552cf701a4b179065e0cb62c15f0c
|
||||
msgid ""
|
||||
"[baichuan-inc/baichuan-7B](https://huggingface.co/baichuan-inc/baichuan-"
|
||||
"7B)"
|
||||
msgstr ""
|
||||
|
||||
#: ../../getting_started/application/model/model.md:37
|
||||
#: aa5bf7e5f91c417598a298b06d4fa8b1
|
||||
msgid ""
|
||||
"[HuggingFaceH4/starchat-beta](https://huggingface.co/HuggingFaceH4"
|
||||
"/starchat-beta)"
|
||||
msgstr ""
|
||||
|
||||
#: ../../getting_started/application/model/model.md:38
|
||||
#: 507210a5746746f8bfc9ef5421e0f712
|
||||
msgid ""
|
||||
"[FlagAlpha/Llama2-Chinese-13b-"
|
||||
"Chat](https://huggingface.co/FlagAlpha/Llama2-Chinese-13b-Chat)"
|
||||
msgstr ""
|
||||
|
||||
#: ../../getting_started/application/model/model.md:39
|
||||
#: 8a45141e06584b23bfae1eb1d7b3152a
|
||||
msgid "[BAAI/AquilaChat-7B](https://huggingface.co/BAAI/AquilaChat-7B)"
|
||||
msgstr ""
|
||||
|
||||
#: ../../getting_started/application/model/model.md:40
|
||||
#: 78f34f97c6a441a29d20d0ec3164a466
|
||||
msgid "[all models of OpenOrca](https://huggingface.co/Open-Orca)"
|
||||
msgstr ""
|
||||
|
||||
#: ../../getting_started/application/model/model.md:41
|
||||
#: b7b0f7867d61464faa7b4913daaaca5c
|
||||
msgid ""
|
||||
"[Spicyboros](https://huggingface.co/jondurbin/spicyboros-7b-2.2?not-for-"
|
||||
"all-audiences=true) + [airoboros "
|
||||
"2.2](https://huggingface.co/jondurbin/airoboros-l2-13b-2.2)"
|
||||
msgstr ""
|
||||
|
||||
#: ../../getting_started/application/model/model.md:42
|
||||
#: c3750533dfc64a9fb37044eb83c857dc
|
||||
msgid ""
|
||||
"[VMware's OpenLLaMa OpenInstruct](https://huggingface.co/VMware/open-"
|
||||
"llama-7b-open-instruct)"
|
||||
msgstr ""
|
||||
|
||||
#: ../../getting_started/application/model/model.md:44
|
||||
#: 325d5b147abe4360997d2d6cbd6da986
|
||||
msgid "Support API Proxy LLMs"
|
||||
msgstr "支持第三方模型服务"
|
||||
|
||||
#: ../../getting_started/application/model/model.md:45
|
||||
#: 426d835ec30c4171b05817fc0bbafeb6
|
||||
msgid "[ChatGPT](https://api.openai.com/)"
|
||||
msgstr ""
|
||||
|
||||
#: ../../getting_started/application/model/model.md:46
|
||||
#: 659eefe6896c49e09d81edd6e3c36afe
|
||||
msgid "[Tongyi](https://www.aliyun.com/product/dashscope)"
|
||||
msgstr ""
|
||||
|
||||
#: ../../getting_started/application/model/model.md:47
|
||||
#: ff24d85761c6492bbd546ecda67f38ea
|
||||
msgid "[Wenxin](https://cloud.baidu.com/product/wenxinworkshop?track=dingbutonglan)"
|
||||
msgstr ""
|
||||
|
||||
#: ../../getting_started/application/model/model.md:48
|
||||
#: a798259b3694447091d6f1cee969e6af
|
||||
msgid "[ChatGLM](http://open.bigmodel.cn/)"
|
||||
msgstr ""
|
||||
|
||||
#: ../../getting_started/application/model/model.md:50
|
||||
#: e053ece66b444b37a4bced21a4353c95
|
||||
msgid "Create && Start LLM Model"
|
||||
msgstr "创建并启动模型服务"
|
||||
|
||||
#: ../../getting_started/application/model/model.md:52
|
||||
#: 58c44380ae2946d4a3ecd22dd0ae47ac
|
||||
msgid ""
|
||||
"Make sure your LLM Model file is downloaded or LLM Model Proxy api "
|
||||
"service is ready."
|
||||
msgstr "需要事先下载模型文件或者准备好第三方模型服务api"
|
||||
|
||||
#: ../../getting_started/application/model/model.md:54
|
||||
#: 659e756c822d4ef68b086a6e69d3ed9f
|
||||
msgid ""
|
||||
" When create "
|
||||
"success, you can see:  Then you can "
|
||||
"choose and switch llm model service to chat. "
|
||||
msgstr ""
|
||||
|
||||
#: ../../getting_started/application/model/model.md:54
|
||||
#: e662c48673a94b0e9f4343f900a51af2
|
||||
msgid "model-start"
|
||||
msgstr ""
|
||||
|
||||
#: ../../getting_started/application/model/model.md:54
|
||||
#: ../../getting_started/application/model/model.md:60
|
||||
#: 38dd8f0de66740b3961fbd9444437d76 4190bd7bb2d34a6688382df6ee6ac610
|
||||
#: f60becdb866a411babe22ad27922fdcc
|
||||
msgid "image"
|
||||
msgstr ""
|
||||
|
||||
#: ../../getting_started/application/model/model.md:59
|
||||
#: 61bfa8fa14ec40e2ba56a6bc65fda9df
|
||||
msgid "Stop LLM Model"
|
||||
msgstr ""
|
||||
|
||||
#: ../../getting_started/application/model/model.md:60
|
||||
#: 98188d79b0034913a500f1c0da603741
|
||||
msgid ""
|
||||
""
|
||||
msgstr ""
|
||||
|
@ -8,7 +8,7 @@ msgid ""
|
||||
msgstr ""
|
||||
"Project-Id-Version: DB-GPT 👏👏 0.3.6\n"
|
||||
"Report-Msgid-Bugs-To: \n"
|
||||
"POT-Creation-Date: 2023-09-13 10:11+0800\n"
|
||||
"POT-Creation-Date: 2023-10-17 19:39+0800\n"
|
||||
"PO-Revision-Date: YEAR-MO-DA HO:MI+ZONE\n"
|
||||
"Last-Translator: FULL NAME <EMAIL@ADDRESS>\n"
|
||||
"Language: zh_CN\n"
|
||||
@ -19,24 +19,412 @@ msgstr ""
|
||||
"Content-Transfer-Encoding: 8bit\n"
|
||||
"Generated-By: Babel 2.12.1\n"
|
||||
|
||||
#: ../../getting_started/install/cluster/cluster.rst:2
|
||||
#: ../../getting_started/install/cluster/cluster.rst:13
|
||||
#: 69804208b580447798d6946150da7bdf
|
||||
#: ../../getting_started/install/cluster/cluster.rst:72
|
||||
msgid "Cluster deployment"
|
||||
msgstr "集群部署"
|
||||
|
||||
#: ../../getting_started/install/cluster/cluster.rst:4
|
||||
#: fa3e4e0ae60a45eb836bcd256baa9d91
|
||||
#: ../../getting_started/install/cluster/cluster.rst:2
|
||||
#: bc5bb85c846b4ad19aeeccdd016f3ce8
|
||||
#, fuzzy
|
||||
msgid "LLM Deployment"
|
||||
msgstr "集群部署"
|
||||
|
||||
#: ../../getting_started/install/cluster/cluster.rst:3
|
||||
#: e1cebf0518db423fbc78e39945a423fa
|
||||
msgid ""
|
||||
"In the exploration and implementation of AI model applications, it can be"
|
||||
" challenging to directly integrate with model services. Currently, there "
|
||||
"is no established standard for deploying large models, and new models and"
|
||||
" inference methods are constantly being released. As a result, a "
|
||||
"significant amount of time is spent adapting to the ever-changing "
|
||||
"underlying model environment. This, to some extent, hinders the "
|
||||
"exploration and implementation of AI model applications."
|
||||
msgstr ""
|
||||
"在AIGC应用探索和生产落地中,难以避免直接与模型服务对接,但是目前大模型的推理部署目前还没有一个事实标准,不断有新的模型发布,也不断有新的训练和推理方法被提出,而我们就不得不花费相当一部分时间来适配多变的底层模型环境,而这在一定程度上制约了"
|
||||
" AIGC 应用的探索和落地。"
|
||||
|
||||
#: ../../getting_started/install/cluster/cluster.rst:5
|
||||
#: c6179ac327734b7ca7b87612988dad29
|
||||
msgid ""
|
||||
"We divide the deployment of large models into two layers: the model "
|
||||
"inference layer and the model deployment layer. The model inference layer"
|
||||
" corresponds to model inference frameworks such as vLLM, TGI, and "
|
||||
"TensorRT. The model deployment layer interfaces with the inference layer "
|
||||
"below and provides model serving capabilities above. We refer to this "
|
||||
"layer's framework as the model deployment framework. Positioned above the"
|
||||
" inference frameworks, the model deployment framework offers capabilities"
|
||||
" such as multiple model instances, multiple inference frameworks, "
|
||||
"multiple service protocols, multi-cloud support, automatic scaling, and "
|
||||
"observability."
|
||||
msgstr ""
|
||||
"我们将大模型推理部署分为两层:模型推理层、模型部署层。模型推理层,对应模型推理框架 vLLM、TGI 和 TensorRT "
|
||||
"等。模型部署层向下对接推理层,向上提供模型服务能力,这一层的框架我们称为模型部署框架,模型部署框架在推理框架之上,提供了多模型实例、多推理框架、多服务协议、多云、自动扩缩容和可观测性等能力。"
|
||||
|
||||
#: ../../getting_started/install/cluster/cluster.rst:7
|
||||
#: 61bae2fc8e3347248ecf084a3977e448
|
||||
msgid ""
|
||||
"In order to deploy DB-GPT to multiple nodes, you can deploy a cluster. "
|
||||
"The cluster architecture diagram is as follows:"
|
||||
msgstr "为了能将 DB-GPT 部署到多个节点上,你可以部署一个集群,集群的架构图如下:"
|
||||
msgstr "为了能将DB-GPT部署到多个节点上,你可以部署一个集群,集群的架构图如下:"
|
||||
|
||||
#: ../../getting_started/install/cluster/cluster.rst:11
|
||||
#: e739449099ca43cabe9883233ca7e572
|
||||
#: ../../getting_started/install/cluster/cluster.rst:14
|
||||
#: af8d74ac3c5747b3934d02200afbb4ba
|
||||
msgid "Design of DB-GPT:"
|
||||
msgstr "设计目标"
|
||||
|
||||
#: ../../getting_started/install/cluster/cluster.rst:16
|
||||
#: ab9f332105ac490097501798d7b6cf15
|
||||
msgid ""
|
||||
"DB-GPT is designed as a llm deployment framework, taking into account the"
|
||||
" above design objectives."
|
||||
msgstr "支持多模型和多推理框架"
|
||||
|
||||
#: ../../getting_started/install/cluster/cluster.rst:18
|
||||
#: 281c38e2e84940098eeeb435db6d1f05
|
||||
msgid ""
|
||||
"Support for llm and inference frameworks: DB-GPT supports the "
|
||||
"simultaneous deployment of llm and is compatible with multiple inference "
|
||||
"frameworks such as vLLM, TGI, and TensorRT."
|
||||
msgstr ""
|
||||
"在 DB-GPT 中,直接提供了对 FastChat、vLLM和 llama.cpp 的无缝支持,理论上它们支持模型 DB-GPT "
|
||||
"都支持,如果您对推理速度和并发能力有需求,可以直接使用 vLLM,如果您希望 CPU 或者 mac 的 "
|
||||
"m1/m2性能也获得不错的推理性能,可以使用 llama.cpp,此外,DB-GPT 还支持了很多代理模型(openai、azure "
|
||||
"openai、google bard、文心一言、通义千问和智谱AI等)。"
|
||||
|
||||
#: ../../getting_started/install/cluster/cluster.rst:20
|
||||
#: ec7e111f2db64c7fa926b1491020ae73
|
||||
msgid ""
|
||||
"Scalability and stability: DB-GPT has good scalability, allowing easy "
|
||||
"addition of new models and inference frameworks. It utilizes a "
|
||||
"distributed architecture and automatic scaling capabilities to handle "
|
||||
"high concurrency and large-scale requests, ensuring system stability."
|
||||
msgstr "良好的扩展性和稳定性”"
|
||||
|
||||
#: ../../getting_started/install/cluster/cluster.rst:22
|
||||
#: 49566c3e708c4ef3a6135ea6245a5417
|
||||
msgid ""
|
||||
"Performance optimization: DB-GPT undergoes performance optimization to "
|
||||
"provide fast and efficient model inference capabilities, preventing it "
|
||||
"from becoming a performance bottleneck during inference."
|
||||
msgstr "框架性能 “不拖后腿”"
|
||||
|
||||
#: ../../getting_started/install/cluster/cluster.rst:24
|
||||
#: 0ae41617a7904dcfadd64ec921d3987e
|
||||
msgid ""
|
||||
"Management and observability capabilities: DB-GPT offers management and "
|
||||
"monitoring functionalities, including model deployment and configuration "
|
||||
"management, performance monitoring, and logging. It can generate reports "
|
||||
"on model performance and service status to promptly identify and resolve "
|
||||
"issues."
|
||||
msgstr "管理与可观测性能力"
|
||||
|
||||
#: ../../getting_started/install/cluster/cluster.rst:26
|
||||
#: 7c7c762642754c8d8e8b7d4eaad55384
|
||||
msgid ""
|
||||
"Lightweight: DB-GPT is designed as a lightweight framework to improve "
|
||||
"deployment efficiency and save resources. It employs efficient algorithms"
|
||||
" and optimization strategies to minimize resource consumption while "
|
||||
"maintaining sufficient functionality and performance."
|
||||
msgstr "轻量化"
|
||||
|
||||
#: ../../getting_started/install/cluster/cluster.rst:29
|
||||
#: 32c1d24c20ed4155ad05c505a355ebaf
|
||||
msgid "1.Support for multiple models and inference frameworks"
|
||||
msgstr "1.支持多模型和多推理框架"
|
||||
|
||||
#: ../../getting_started/install/cluster/cluster.rst:30
|
||||
#: b0d80a26a0d14ab4a6a82bbdc693a9cc
|
||||
msgid ""
|
||||
"The field of large models is evolving rapidly, with new models being "
|
||||
"released and new methods being proposed for model training and inference."
|
||||
" We believe that this situation will continue for some time."
|
||||
msgstr "当前大模型领域发展可谓日新月异,不断有新的模型发布,在模型训练和推理方面,也不断有新的方法被提出。我们判断,这样情况还会持续一段时间。"
|
||||
|
||||
#: ../../getting_started/install/cluster/cluster.rst:32
|
||||
#: 8b7c3830e5d64567bef9244bd0c4442d
|
||||
msgid ""
|
||||
"For most users exploring and implementing AI applications, this situation"
|
||||
" has its pros and cons. The benefits are apparent, as it brings new "
|
||||
"opportunities and advancements. However, one drawback is that users may "
|
||||
"feel compelled to constantly try and explore new models and inference "
|
||||
"frameworks."
|
||||
msgstr ""
|
||||
"大于大部分 AIGC "
|
||||
"应用场景探索和落地的用户来说,这种情况有利也有弊,利无需多言,而弊端之一就在于被“牵着鼻子走”,需要不断去尝试和探索新的模型、新的推理框架。"
|
||||
|
||||
#: ../../getting_started/install/cluster/cluster.rst:34
|
||||
#: b2f7bf8f9ef4406989a366d66e59794b
|
||||
msgid ""
|
||||
"In DB-GPT, seamless support is provided for FastChat, vLLM, and "
|
||||
"llama.cpp. In theory, any model supported by these frameworks is also "
|
||||
"supported by DB-GPT. If you have requirements for faster inference speed "
|
||||
"and concurrency, you can directly use vLLM. If you want good inference "
|
||||
"performance on CPU or Apple's M1/M2 chips, you can use llama.cpp. "
|
||||
"Additionally, DB-GPT also supports various proxy models from OpenAI, "
|
||||
"Azure OpenAI, Google BARD, Wenxin Yiyan, Tongyi Qianwen, and Zhipu AI, "
|
||||
"among others."
|
||||
msgstr ""
|
||||
"在 DB-GPT 中,直接提供了对 FastChat、vLLM和 llama.cpp 的无缝支持,理论上它们支持模型 DB-GPT "
|
||||
"都支持,如果您对推理速度和并发能力有需求,可以直接使用 vLLM,如果您希望 CPU 或者 mac 的 "
|
||||
"m1/m2性能也获得不错的推理性能,可以使用 llama.cpp,此外,DB-GPT 还支持了很多代理模型(openai、azure "
|
||||
"openai、google bard、文心一言、通义千问和智谱AI等)。"
|
||||
|
||||
#: ../../getting_started/install/cluster/cluster.rst:37
|
||||
#: 9f894d801c364d58814f295222567992
|
||||
msgid "2.Have good scalability and stability"
|
||||
msgstr "2.扩展性和稳定性要足够好"
|
||||
|
||||
#: ../../getting_started/install/cluster/cluster.rst:38
|
||||
#: 5423f1f5f0e94804becd3caa500b4046
|
||||
msgid ""
|
||||
"A comprehensive model deployment framework consists of several "
|
||||
"components: the Model Worker, which directly interfaces with the "
|
||||
"underlying inference frameworks; the Model Controller, which manages and "
|
||||
"maintains multiple model components; and the Model API, which provides "
|
||||
"external model serving capabilities."
|
||||
msgstr ""
|
||||
"一个比较完善模型部署框架需要多个部分组成,与底层推理框架直接对接的 Model Worker,管理和维护多个模型组件的 Model "
|
||||
"Controller 以及对外提供模型服务能力的 Model API。"
|
||||
|
||||
#: ../../getting_started/install/cluster/cluster.rst:40
|
||||
#: 6e0948e9a239405ca7d90543569f35fa
|
||||
msgid ""
|
||||
"The Model Worker plays a crucial role and needs to be highly extensible. "
|
||||
"It can be specialized for deploying large language models, embedding "
|
||||
"models, or other types of models. The choice of Model Worker depends on "
|
||||
"the deployment environment, such as a regular physical server "
|
||||
"environment, a Kubernetes environment, or specific cloud environments "
|
||||
"provided by various cloud service providers."
|
||||
msgstr ""
|
||||
"其中 Model Worker 必须要可以扩展,可以是专门部署大语言模型的 Model Worker,也可以是用来部署 Embedding 模型的"
|
||||
" Model Worker。"
|
||||
|
||||
#: ../../getting_started/install/cluster/cluster.rst:42
|
||||
#: 54eba96c95c847e6af77ba94114419ab
|
||||
msgid ""
|
||||
"Having different Model Worker options allows users to select the most "
|
||||
"suitable one based on their specific requirements and infrastructure. "
|
||||
"This flexibility enables efficient deployment and utilization of models "
|
||||
"across different environments."
|
||||
msgstr "当然也可以根据部署的环境,如普通物理机环境、kubernetes 环境以及一些特定云服务商提供的云环境等来选择不同 Model Worker"
|
||||
|
||||
#: ../../getting_started/install/cluster/cluster.rst:44
|
||||
#: 693ec0c1b9274f64a1d8fcbd5a8a273d
|
||||
msgid ""
|
||||
"The Model Controller, responsible for managing model metadata, also needs"
|
||||
" to be scalable. Different deployment environments and model management "
|
||||
"requirements may call for different choices of Model Controllers."
|
||||
msgstr ""
|
||||
"用来管理模型元数据的 Model Controller 也需要可扩展,不同的部署环境已经不同的模型管控要求来选择不同的 Model "
|
||||
"Controller。"
|
||||
|
||||
#: ../../getting_started/install/cluster/cluster.rst:46
|
||||
#: 616c0dc43dd84069bde396f1cc99e316
|
||||
msgid ""
|
||||
"Furthermore, I believe that model serving shares many similarities with "
|
||||
"traditional microservices. In microservices, a service can have multiple "
|
||||
"instances, and all instances are registered in a central registry. "
|
||||
"Service consumers retrieve the list of instances based on the service "
|
||||
"name from the registry and select a specific instance for invocation "
|
||||
"using a load balancing strategy."
|
||||
msgstr "另外,在我看来,模型服务与传统的微服务有很多共通之处,在微服务中,微服务中某个服务可以有多个服务实例,所有的服务实例都统一注册到注册中心,服务调用方根据服务名称从注册中心拉取该服务名对应的服务列表,然后根据一定的负载均衡策略选择某个具体的服务实例去调用。"
|
||||
|
||||
#: ../../getting_started/install/cluster/cluster.rst:48
|
||||
#: 83389d65894f44598a0eda3984a41cb3
|
||||
msgid ""
|
||||
"Similarly, in model deployment, a model can have multiple instances, and "
|
||||
"all instances can be registered in a model registry. Model service "
|
||||
"consumers retrieve the list of instances based on the model name from the"
|
||||
" registry and select a specific instance for invocation using a model-"
|
||||
"specific load balancing strategy."
|
||||
msgstr "而在模型部署中,也可以考虑这样的架构,某一个模型可以有多个模型实例,所有的模型实例都统一注册到模型注册中心,然后模型服务调用方根据模型名称到注册中心去拉取模型实例列表,然后根据模型的负载均衡策略去调用某个具体的的模型实例。"
|
||||
|
||||
#: ../../getting_started/install/cluster/cluster.rst:50
|
||||
#: 8524b6f0536446a6900715aaefcdee98
|
||||
msgid ""
|
||||
"Introducing a model registry, responsible for storing model instance "
|
||||
"metadata, enables such an architecture. The model registry can leverage "
|
||||
"existing service registries used in microservices (such as Nacos, Eureka,"
|
||||
" etcd, Consul, etc.) as implementations. This ensures high availability "
|
||||
"of the entire deployment system."
|
||||
msgstr ""
|
||||
"这里我们引入模型注册中心,它负责存储 Model Controller 中的模型实例元数据,它可以直接使用微服务中的注册中心作为实现(如 "
|
||||
"nacos、eureka、etcd 和 consul 等),这样整个部署系统便可以做到高可用。"
|
||||
|
||||
#: ../../getting_started/install/cluster/cluster.rst:53
|
||||
#: ff904ff9192248bda12b5ccae28df26f
|
||||
msgid "3.High performance for framework."
|
||||
msgstr "3.框架性能“不拖后腿”"
|
||||
|
||||
#: ../../getting_started/install/cluster/cluster.rst:54
|
||||
#: c6baf9f2a059487bbf7c3996e401effb
|
||||
msgid ""
|
||||
"and optimization are complex tasks, and inappropriate framework designs "
|
||||
"can increase this complexity. In our view, to ensure that the deployment "
|
||||
"framework does not lag behind in terms of performance, there are two main"
|
||||
" areas of focus:"
|
||||
msgstr "框架层不应该成为模型推理性能的瓶颈,大部分情况下,硬件及推理框架决定了模型服务的服务能力,模型的推理部署和优化是一项复杂的工程,而不恰当的框架设计却可能增加这种复杂度,在我们看来,部署框架为了在性能上“不拖后腿”,有两个主要关注点:"
|
||||
|
||||
#: ../../getting_started/install/cluster/cluster.rst:56
|
||||
#: f74418d5394b4afd96578c28ff306116
|
||||
msgid ""
|
||||
"Avoid excessive encapsulation: The more encapsulation and longer the "
|
||||
"chain, the more challenging it becomes to identify performance issues."
|
||||
msgstr "避免过多的封装:封装越多、链路越长,性能问题越难以排查。"
|
||||
|
||||
#: ../../getting_started/install/cluster/cluster.rst:58
|
||||
#: 692bc702a7f54d48b67c36ac1dc38867
|
||||
msgid ""
|
||||
"High-performance communication design: High-performance communication "
|
||||
"involves various aspects that cannot be elaborated in detail here. "
|
||||
"However, considering that Python occupies a prominent position in current"
|
||||
" AIGC applications, asynchronous interfaces are crucial for service "
|
||||
"performance in Python. Therefore, the model serving layer should only "
|
||||
"provide asynchronous interfaces and be compatible with the layers that "
|
||||
"interface with the model inference framework. If the model inference "
|
||||
"framework offers asynchronous interfaces, direct integration should be "
|
||||
"implemented. Otherwise, synchronous-to-asynchronous task conversion "
|
||||
"should be used to provide support."
|
||||
msgstr ""
|
||||
"高性能的通信设计:高性能通信涉及的点很多,这里不做过多阐述。由于目前 AIGC 应用中,Python 占据领导地位,在 Python "
|
||||
"中,异步接口对于服务的性能至关重要,因此,模型服务层只提供异步接口,与模型推理框架对接的层做兼容,如果模型推理框架提供了异步接口则直接对接,否则使用同步转异步的任务的方式支持。"
|
||||
|
||||
#: ../../getting_started/install/cluster/cluster.rst:61
|
||||
#: 3b2bed671a264a13a61b7337e4577185
|
||||
msgid "4.Management and monitoring capabilities."
|
||||
msgstr "4.具备一定的管理和监控能力"
|
||||
|
||||
#: ../../getting_started/install/cluster/cluster.rst:62
|
||||
#: 010c26d97cb748d28f86d9d58bdb3c6d
|
||||
msgid ""
|
||||
"In the exploration or production implementation of AIGC (Artificial "
|
||||
"Intelligence and General Computing) applications, it is important for the"
|
||||
" model deployment system to have certain management capabilities. This "
|
||||
"involves controlling the deployed model instances through APIs or "
|
||||
"command-line interfaces, such as for online/offline management, "
|
||||
"restarting, and debugging."
|
||||
msgstr ""
|
||||
"在 AIGC 应用探索中或者 AIGC 应用生产落地中,我们需要模型部署系统能具备一定管理能力:通过 API "
|
||||
"或者命令行等对部署的模型实例进行一定管控(如上线、下线、重启和 debug 等)。"
|
||||
|
||||
#: ../../getting_started/install/cluster/cluster.rst:64
|
||||
#: 49f450fdb5f24d578b4cb8427e57ec15
|
||||
msgid ""
|
||||
"Observability is a crucial capability in production systems, and I "
|
||||
"believe it is equally, if not more, important in AIGC applications. This "
|
||||
"is because user experiences and interactions with the system are more "
|
||||
"complex. In addition to traditional observability metrics, we are also "
|
||||
"interested in user input information and corresponding contextual "
|
||||
"information, which specific model instance and parameters were invoked, "
|
||||
"the content and response time of model outputs, user feedback, and more."
|
||||
msgstr ""
|
||||
"可观测性是生产系统的一项重要能力,个人认为在 AIGC "
|
||||
"应用中,可观测性同样重要,甚至更加重要,因为用户的体验、用户与系统的交互行为更复杂,除了传统的观测指标外,我们还更加关心用户的输入信息及其对应的场景上下文信息、调用了哪个模型实例和模型参数、模型输出的内容和响应时间、用户反馈等等。"
|
||||
|
||||
#: ../../getting_started/install/cluster/cluster.rst:66
|
||||
#: 18c940b2e65d4f57ba54b9671ac02254
|
||||
msgid ""
|
||||
"By analyzing this information, we can identify performance bottlenecks in"
|
||||
" model services and gather user experience data (e.g., response latency, "
|
||||
"problem resolution, and user satisfaction extracted from user content). "
|
||||
"These insights serve as important foundations for further optimizing the "
|
||||
"entire application."
|
||||
msgstr "我们可以从这些信息中发现一部分模型服务的性能瓶颈,以及一部分用户体验数据(响应延迟如何?是否解决了用户的问题也及用户内容中提取出用户满意度等等),这些都是整个应用进一步优化的重要依据。"
|
||||
|
||||
#: ../../getting_started/install/cluster/cluster.rst:68
|
||||
#: a1aa65d7b0694b75a8a298090b3cbfac
|
||||
#, fuzzy
|
||||
msgid ""
|
||||
"On :ref:`Deploying on local machine <local-cluster-index>`. Local cluster"
|
||||
" deployment."
|
||||
"On :ref:`Deploying on standalone mode <standalone-index>`. Standalone "
|
||||
"Deployment."
|
||||
msgstr "关于 :ref:`在本地机器上部署 <local-cluster-index>`。本地集群部署。"
|
||||
|
||||
#: ../../getting_started/install/cluster/cluster.rst:69
|
||||
#: 2d74de97891c4a31806ce286c3818631
|
||||
#, fuzzy
|
||||
msgid ""
|
||||
"On :ref:`Deploying on cluster mode <local-cluster-index>`. Cluster "
|
||||
"Deployment."
|
||||
msgstr "关于 :ref:`在本地机器上部署 <local-cluster-index>`。本地集群部署。"
|
||||
|
||||
#~ msgid ""
|
||||
#~ "When it comes to model deployment, "
|
||||
#~ "performance is of utmost importance. The"
|
||||
#~ " framework should be optimized to "
|
||||
#~ "ensure efficient and fast model "
|
||||
#~ "inference capabilities. It should not "
|
||||
#~ "become a performance bottleneck and "
|
||||
#~ "should be capable of handling high "
|
||||
#~ "volumes of requests without compromising "
|
||||
#~ "response times."
|
||||
#~ msgstr "框架层不应该成为模型推理性能的瓶颈,大部分情况下,硬件及推理框架决定了模型服务的服务能力,模型的推理部署和优化是一项复杂的工程,而不恰当的框架设计却可能增加这种复杂度,在我们看来,部署框架为了在性能上“不拖后腿”,有两个主要关注点:"
|
||||
|
||||
#~ msgid ""
|
||||
#~ "To achieve this, the framework can "
|
||||
#~ "employ various performance optimization "
|
||||
#~ "techniques. This may include utilizing "
|
||||
#~ "efficient algorithms, leveraging hardware "
|
||||
#~ "acceleration (such as GPUs or "
|
||||
#~ "specialized AI chips), optimizing memory "
|
||||
#~ "usage, and implementing parallel processing"
|
||||
#~ " techniques to maximize throughput."
|
||||
#~ msgstr ""
|
||||
|
||||
#~ msgid ""
|
||||
#~ "By prioritizing performance optimization, the"
|
||||
#~ " framework can provide seamless and "
|
||||
#~ "efficient model inference, enabling real-"
|
||||
#~ "time and high-performance applications "
|
||||
#~ "without impeding the overall system "
|
||||
#~ "performance."
|
||||
#~ msgstr ""
|
||||
|
||||
#~ msgid ""
|
||||
#~ "To ensure the stability and reliability"
|
||||
#~ " of model deployment, the framework "
|
||||
#~ "needs to provide management and "
|
||||
#~ "monitoring functionalities. This includes "
|
||||
#~ "managing the lifecycle of models, such"
|
||||
#~ " as model registration, updates, and "
|
||||
#~ "deletion. Additionally, the framework should"
|
||||
#~ " offer monitoring and logging of "
|
||||
#~ "performance metrics, resource utilization, and"
|
||||
#~ " system health to promptly identify "
|
||||
#~ "and resolve potential issues."
|
||||
#~ msgstr ""
|
||||
#~ "在 AIGC 应用探索中或者 AIGC "
|
||||
#~ "应用生产落地中,我们需要模型部署系统能具备一定管理能力:通过 API "
|
||||
#~ "或者命令行等对部署的模型实例进行一定管控(如上线、下线、重启和 debug 等)。"
|
||||
|
||||
#~ msgid ""
|
||||
#~ "Management capabilities may involve user "
|
||||
#~ "permission management, model versioning, and"
|
||||
#~ " configuration management to facilitate "
|
||||
#~ "team collaboration and manage multiple "
|
||||
#~ "versions and configurations of models."
|
||||
#~ msgstr ""
|
||||
|
||||
#~ msgid ""
|
||||
#~ "Monitoring capabilities can include real-"
|
||||
#~ "time monitoring of model performance "
|
||||
#~ "metrics such as inference latency and"
|
||||
#~ " throughput. Furthermore, monitoring system "
|
||||
#~ "resource usage, such as CPU, memory, "
|
||||
#~ "network, and system health, along with"
|
||||
#~ " error logging, can be valuable for"
|
||||
#~ " diagnostics and troubleshooting."
|
||||
#~ msgstr ""
|
||||
#~ "可观测性是生产系统的一项重要能力,个人认为在 AIGC "
|
||||
#~ "应用中,可观测性同样重要,甚至更加重要,因为用户的体验、用户与系统的交互行为更复杂,除了传统的观测指标外,我们还更加关心用户的输入信息及其对应的场景上下文信息、调用了哪个模型实例和模型参数、模型输出的内容和响应时间、用户反馈等等。"
|
||||
|
||||
#~ msgid ""
|
||||
#~ "By providing management and monitoring "
|
||||
#~ "capabilities, the framework can assist "
|
||||
#~ "users in effectively managing and "
|
||||
#~ "maintaining deployed models, ensuring system"
|
||||
#~ " stability and reliability, and enabling"
|
||||
#~ " timely responses to and resolution "
|
||||
#~ "of issues, thus enhancing overall system"
|
||||
#~ " efficiency and availability."
|
||||
#~ msgstr ""
|
||||
|
||||
|
@ -8,7 +8,7 @@ msgid ""
|
||||
msgstr ""
|
||||
"Project-Id-Version: DB-GPT 👏👏 0.3.6\n"
|
||||
"Report-Msgid-Bugs-To: \n"
|
||||
"POT-Creation-Date: 2023-09-20 17:34+0800\n"
|
||||
"POT-Creation-Date: 2023-10-17 17:24+0800\n"
|
||||
"PO-Revision-Date: YEAR-MO-DA HO:MI+ZONE\n"
|
||||
"Last-Translator: FULL NAME <EMAIL@ADDRESS>\n"
|
||||
"Language: zh_CN\n"
|
||||
@ -20,22 +20,23 @@ msgstr ""
|
||||
"Generated-By: Babel 2.12.1\n"
|
||||
|
||||
#: ../../getting_started/install/cluster/vms/index.md:1
|
||||
#: 48c062c146cd42b48c248ae590d386df
|
||||
msgid "Local cluster deployment"
|
||||
msgstr "本地集群部署"
|
||||
#: b23e82d177c443ca8a36b94343ce2173
|
||||
#, fuzzy
|
||||
msgid "Cluster Deployment"
|
||||
msgstr "模型集群部署"
|
||||
|
||||
#: ../../getting_started/install/cluster/vms/index.md:4
|
||||
#: ce59bbbc9c294cafa6df8165de61967f
|
||||
#: 47ba242f687a41438f1fa41febbe81a3
|
||||
msgid "Model cluster deployment"
|
||||
msgstr "模型集群部署"
|
||||
|
||||
#: ../../getting_started/install/cluster/vms/index.md:7
|
||||
#: 51650b41f4974f819a623db1e97764c7
|
||||
#: 077917ec4fa940689ec2e08e3a000578
|
||||
msgid "**Installing Command-Line Tool**"
|
||||
msgstr "**安装命令行工具**"
|
||||
|
||||
#: ../../getting_started/install/cluster/vms/index.md:9
|
||||
#: 64fcb0e3ec8d491aa9d15f783823e579
|
||||
#: ad498ea7e59f4126838d0a6760da41a3
|
||||
#, fuzzy
|
||||
msgid ""
|
||||
"All operations below are performed using the `dbgpt` command. To use the "
|
||||
@ -47,129 +48,132 @@ msgstr ""
|
||||
".`。或者,您可以使用 `python pilot/scripts/cli_scripts.py` 作为 `dbgpt` 命令的替代。"
|
||||
|
||||
#: ../../getting_started/install/cluster/vms/index.md:11
|
||||
#: 572f2d79178a4e6780799dd8bc0867f9
|
||||
#: 33e6fa8572054ed1b7e92e14487ef044
|
||||
msgid "Launch Model Controller"
|
||||
msgstr "启动 Model Controller"
|
||||
|
||||
#: ../../getting_started/install/cluster/vms/index.md:17
|
||||
#: 66cfeb3d834c4f7b87bb3180ae447203
|
||||
#: 2016f7400d9c4013a2da40e3ecfbe02c
|
||||
msgid "By default, the Model Controller starts on port 8000."
|
||||
msgstr "默认情况下,Model Controller 启动在 8000 端口。"
|
||||
|
||||
#: ../../getting_started/install/cluster/vms/index.md:20
|
||||
#: cddb3dbc31734462b6aa3c63e3c76fe2
|
||||
#: 82338f543db649c1adc2dc57867e2094
|
||||
msgid "Launch LLM Model Worker"
|
||||
msgstr "启动 LLM Model Worker"
|
||||
|
||||
#: ../../getting_started/install/cluster/vms/index.md:22
|
||||
#: 953eeafd791942e895833bce2a4d755f
|
||||
#: 49c2a89381be4fdda17d3cb002899d1f
|
||||
msgid "If you are starting `chatglm2-6b`:"
|
||||
msgstr "如果您启动的是 `chatglm2-6b`:"
|
||||
|
||||
#: ../../getting_started/install/cluster/vms/index.md:31
|
||||
#: 779d8daa394b4731bc74a93c077961e1
|
||||
#: 5c8b223521d640d9a18b169924225510
|
||||
msgid "If you are starting `vicuna-13b-v1.5`:"
|
||||
msgstr "如果您启动的是 `vicuna-13b-v1.5`:"
|
||||
|
||||
#: ../../getting_started/install/cluster/vms/index.md:40
|
||||
#: ../../getting_started/install/cluster/vms/index.md:53
|
||||
#: 736b34df46e640fbbf3eb41ff5f44cc2 b620ee13d10748e6a89c67a9bfb5a53b
|
||||
#: 1ad98a11e3f6488cad3d6f7349d4ff70 64b71a7581c34a0d9ba0c9455167b81d
|
||||
msgid "Note: Be sure to use your own model name and model path."
|
||||
msgstr "注意:确保使用您自己的模型名称和模型路径。"
|
||||
|
||||
#: ../../getting_started/install/cluster/vms/index.md:42
|
||||
#: d1f48ab4090d4344aa2a010cdc88a28e
|
||||
#: 5929f47166b241fa9988f1ecb1e45186
|
||||
msgid "Launch Embedding Model Worker"
|
||||
msgstr "启动 Embedding Model Worker"
|
||||
|
||||
#: ../../getting_started/install/cluster/vms/index.md:55
|
||||
#: 0b4c6d2ff51c4167b553a6255ce268ba
|
||||
#: db56788d6758451a823f5b1c91719b56
|
||||
msgid "Check your model:"
|
||||
msgstr "检查您的模型:"
|
||||
|
||||
#: ../../getting_started/install/cluster/vms/index.md:61
|
||||
#: defd23cef23a4e74b150b7b49b99d333
|
||||
#: e0dae6b3b0c84b5ba24194dffee8c919
|
||||
msgid "You will see the following output:"
|
||||
msgstr "您将看到以下输出:"
|
||||
|
||||
#: ../../getting_started/install/cluster/vms/index.md:75
|
||||
#: aaa86e08b60e46ddae52a03f25812f24
|
||||
#: 9806216c698b44909b3664c72cc09710
|
||||
msgid "Connect to the model service in the webserver (dbgpt_server)"
|
||||
msgstr "在 webserver (dbgpt_server) 中连接到模型服务 (dbgpt_server)"
|
||||
|
||||
#: ../../getting_started/install/cluster/vms/index.md:77
|
||||
#: 7fd7b622b2f649d0b7d9b51a998a038c
|
||||
#: 25fb95f7850a4b0e90f6d949bf440f86
|
||||
msgid ""
|
||||
"**First, modify the `.env` file to change the model name and the Model "
|
||||
"Controller connection address.**"
|
||||
msgstr "**首先,修改 `.env` 文件以更改模型名称和模型控制器连接地址。**"
|
||||
|
||||
#: ../../getting_started/install/cluster/vms/index.md:85
|
||||
#: 7ce03ec66f624d0eabd5a2fbe2efcbcc
|
||||
#: 4f66546f32934c5080ca5b7044eeffb8
|
||||
msgid "Start the webserver"
|
||||
msgstr "启动 webserver"
|
||||
|
||||
#: ../../getting_started/install/cluster/vms/index.md:91
|
||||
#: 9e1e2b7925834d6b9140633db1082032
|
||||
#: 4cc99c718b6c470e93d3e5016cdb5be9
|
||||
msgid "`--light` indicates not to start the embedded model service."
|
||||
msgstr "`--light` 表示不启动嵌入式模型服务。"
|
||||
|
||||
#: ../../getting_started/install/cluster/vms/index.md:93
|
||||
#: 4d47f76763914a78a89d62f0befa3fd9
|
||||
#: 4242d989fec249c98a53bdf8a776a103
|
||||
msgid ""
|
||||
"Alternatively, you can prepend the command with `LLM_MODEL=chatglm2-6b` "
|
||||
"to start:"
|
||||
msgstr "或者,您可以在命令前加上 `LLM_MODEL=chatglm2-6b` 来启动:"
|
||||
|
||||
#: ../../getting_started/install/cluster/vms/index.md:100
|
||||
#: 28408fe554dd411c9ca672466d5563b6
|
||||
#: b50e829504b24d64ac9bb3c96bba0271
|
||||
msgid "More Command-Line Usages"
|
||||
msgstr "更多命令行用法"
|
||||
|
||||
#: ../../getting_started/install/cluster/vms/index.md:102
|
||||
#: 8e0aa88d092d49fdb0fa849c83565a41
|
||||
#: 332f11f9f2f24039a0e512cac2672ded
|
||||
msgid "You can view more command-line usages through the help command."
|
||||
msgstr "您可以通过帮助命令查看更多命令行用法。"
|
||||
|
||||
#: ../../getting_started/install/cluster/vms/index.md:104
|
||||
#: f307f82ced7947f980bb65b3543580d1
|
||||
#: 89676ed8d92d4d008183aff4c156bcfe
|
||||
msgid "**View the `dbgpt` help**"
|
||||
msgstr "**查看 `dbgpt` 帮助**"
|
||||
|
||||
#: ../../getting_started/install/cluster/vms/index.md:109
|
||||
#: 7564aed77a7d43e6878b506c6a9788a2
|
||||
#: 384b15e4ee434026814f72044f2eae20
|
||||
msgid "You will see the basic command parameters and usage:"
|
||||
msgstr "您将看到基本的命令参数和用法:"
|
||||
|
||||
#: ../../getting_started/install/cluster/vms/index.md:127
|
||||
#: 569f2b9e62e44179ae8dcf5b05a1f3e8
|
||||
#: 342307aee3a74b5b80c948a53ec4c99f
|
||||
msgid "**View the `dbgpt start` help**"
|
||||
msgstr "**查看 `dbgpt start` 帮助**"
|
||||
|
||||
#: ../../getting_started/install/cluster/vms/index.md:133
|
||||
#: 43e8747d136d4f6cab83c1b1beaa32b0
|
||||
#: 7a3e29aa9caf49ac885e5842606a3d00
|
||||
msgid "Here you can see the related commands and usage for start:"
|
||||
msgstr "在这里,您可以看到启动的相关命令和用法:"
|
||||
|
||||
#: ../../getting_started/install/cluster/vms/index.md:150
|
||||
#: 25e37b3050b348ec9a5c96d9db515e9b
|
||||
#: d64bac2b25ec4c619f74a7209e634ff3
|
||||
msgid "**View the `dbgpt start worker`help**"
|
||||
msgstr "**查看 `dbgpt start worker` 帮助**"
|
||||
|
||||
#: ../../getting_started/install/cluster/vms/index.md:156
|
||||
#: 8e959fd455ca45f9a5e69e0af9b764a4
|
||||
#: 4bb1293ffd6e40f7923943f62c452925
|
||||
msgid "Here you can see the parameters to start Model Worker:"
|
||||
msgstr "在这里,您可以看到启动 Model Worker 的参数:"
|
||||
|
||||
#: ../../getting_started/install/cluster/vms/index.md:215
|
||||
#: 374d274c7a254533900145ef17bb24fb
|
||||
#: 110dd6d71c2845afbe8550d1de9393de
|
||||
msgid "**View the `dbgpt model`help**"
|
||||
msgstr "**查看 `dbgpt model` 帮助**"
|
||||
|
||||
#: ../../getting_started/install/cluster/vms/index.md:221
|
||||
#: 19bcc9abe62f490d9c3c092c5deea24a
|
||||
#: b7ac90dffb84457f8dd87a531ddb72a2
|
||||
msgid ""
|
||||
"The `dbgpt model ` command can connect to the Model Controller via the "
|
||||
"Model Controller address and then manage a remote model:"
|
||||
msgstr "`dbgpt model` 命令可以通过 Model Controller 地址连接到 Model Controller,然后管理远程模型:"
|
||||
|
||||
#~ msgid "Local cluster deployment"
|
||||
#~ msgstr "本地集群部署"
|
||||
|
||||
|
@ -8,7 +8,7 @@ msgid ""
|
||||
msgstr ""
|
||||
"Project-Id-Version: DB-GPT 👏👏 0.3.5\n"
|
||||
"Report-Msgid-Bugs-To: \n"
|
||||
"POT-Creation-Date: 2023-08-29 20:50+0800\n"
|
||||
"POT-Creation-Date: 2023-10-17 14:35+0800\n"
|
||||
"PO-Revision-Date: YEAR-MO-DA HO:MI+ZONE\n"
|
||||
"Last-Translator: FULL NAME <EMAIL@ADDRESS>\n"
|
||||
"Language: zh_CN\n"
|
||||
@ -20,212 +20,249 @@ msgstr ""
|
||||
"Generated-By: Babel 2.12.1\n"
|
||||
|
||||
#: ../../getting_started/install/deploy/deploy.md:1
|
||||
#: b4f766ca21d241e2849ee0a277a0e8f0
|
||||
#: 73f932b662564edba45fbd711fd19005
|
||||
msgid "Installation From Source"
|
||||
msgstr "源码安装"
|
||||
|
||||
#: ../../getting_started/install/deploy/deploy.md:3
|
||||
#: 9cf72ef201ba4c7a99da8d7de9249cf4
|
||||
#: 70b623827a26447cb9382f1cb568b93c
|
||||
msgid ""
|
||||
"This tutorial gives you a quick walkthrough about use DB-GPT with you "
|
||||
"environment and data."
|
||||
msgstr "本教程为您提供了关于如何使用DB-GPT的使用指南。"
|
||||
|
||||
#: ../../getting_started/install/deploy/deploy.md:5
|
||||
#: b488acb9552043df96e9f01277375b56
|
||||
#: 6102ada4b19a4062947ad0ee5305dad5
|
||||
msgid "Installation"
|
||||
msgstr "安装"
|
||||
|
||||
#: ../../getting_started/install/deploy/deploy.md:7
|
||||
#: e1eb3aafea0c4b82b8d8163b947677dd
|
||||
#: 7c006c0c72944049bba43fd95daf1bd1
|
||||
msgid "To get started, install DB-GPT with the following steps."
|
||||
msgstr "请按照以下步骤安装DB-GPT"
|
||||
|
||||
#: ../../getting_started/install/deploy/deploy.md:9
|
||||
#: 4139c4e62e874dc58136b1f8fe0715fe
|
||||
#: eac8c7f921a042b79b4d0032c01b095a
|
||||
msgid "1. Hardware Requirements"
|
||||
msgstr "1. 硬件要求"
|
||||
|
||||
#: ../../getting_started/install/deploy/deploy.md:10
|
||||
#: c34a204cfa6e4973bfd94e683195c17b
|
||||
#: 8c430e2db5ce41e8b9d22e6e13c62cb3
|
||||
msgid ""
|
||||
"As our project has the ability to achieve ChatGPT performance of over "
|
||||
"85%, there are certain hardware requirements. However, overall, the "
|
||||
"project can be deployed and used on consumer-grade graphics cards. The "
|
||||
"specific hardware requirements for deployment are as follows:"
|
||||
msgstr "由于我们的项目有能力达到85%以上的ChatGPT性能,所以对硬件有一定的要求。但总体来说,我们在消费级的显卡上即可完成项目的部署使用,具体部署的硬件说明如下:"
|
||||
"DB-GPT can be deployed on servers with low hardware requirements or on "
|
||||
"servers with high hardware requirements."
|
||||
msgstr "DB-GPT可以部署在对硬件要求不高的服务器,也可以部署在对硬件要求高的服务器"
|
||||
|
||||
#: ../../getting_started/install/deploy/deploy.md:12
|
||||
#: a6b042509e1149fa8213a014e42eaaae
|
||||
#, fuzzy
|
||||
msgid "Low hardware requirements"
|
||||
msgstr "1. 硬件要求"
|
||||
|
||||
#: ../../getting_started/install/deploy/deploy.md:13
|
||||
#: 577c8c4edc2e4f45963b2a668385852f
|
||||
msgid ""
|
||||
"The low hardware requirements mode is suitable for integrating with "
|
||||
"third-party LLM services' APIs, such as OpenAI, Tongyi, Wenxin, or "
|
||||
"Llama.cpp."
|
||||
msgstr "Low hardware requirements模式适用于对接第三方模型服务的api,比如OpenAI, 通义千问, 文心.cpp。"
|
||||
|
||||
#: ../../getting_started/install/deploy/deploy.md:15
|
||||
#: 384475d3a87043eb9eebc384052ac9cc
|
||||
msgid "DB-GPT provides set proxy api to support LLM api."
|
||||
msgstr "DB-GPT可以通过设置proxy api来支持第三方大模型服务"
|
||||
|
||||
#: ../../getting_started/install/deploy/deploy.md:17
|
||||
#: e5bd8a999adb4e07b8b5221f1893251d
|
||||
msgid "As our project has the ability to achieve ChatGPT performance of over 85%,"
|
||||
msgstr "由于我们的项目有能力达到85%以上的ChatGPT性能"
|
||||
|
||||
#: ../../getting_started/install/deploy/deploy.md:19
|
||||
#: 6a97ed5893414e17bb9c1f8bb21bc965
|
||||
#, fuzzy
|
||||
msgid "High hardware requirements"
|
||||
msgstr "1. 硬件要求"
|
||||
|
||||
#: ../../getting_started/install/deploy/deploy.md:20
|
||||
#: d0c248939b4143a2b01afd051b02ec12
|
||||
#, fuzzy
|
||||
msgid ""
|
||||
"The high hardware requirements mode is suitable for independently "
|
||||
"deploying LLM services, such as Llama series models, Baichuan, ChatGLM, "
|
||||
"Vicuna, and other private LLM service. there are certain hardware "
|
||||
"requirements. However, overall, the project can be deployed and used on "
|
||||
"consumer-grade graphics cards. The specific hardware requirements for "
|
||||
"deployment are as follows:"
|
||||
msgstr "High hardware requirements模式适用于需要独立部署私有大模型服务,比如Llama系列模型,Baichuan, chatglm,vicuna等私有大模型所以对硬件有一定的要求。但总体来说,我们在消费级的显卡上即可完成项目的部署使用,具体部署的硬件说明如下:"
|
||||
|
||||
#: ../../getting_started/install/deploy/deploy.md
|
||||
#: 3a92203e861b42c9af3d4b687d83de5e
|
||||
#: 2ee432394f6b4d9cb0a424f4b99bf3be
|
||||
msgid "GPU"
|
||||
msgstr "GPU"
|
||||
|
||||
#: ../../getting_started/install/deploy/deploy.md
|
||||
#: 6050741571574eb8b9e498a5b3a7e347 c0a7e2aecb4b48949c3e5a4d479ee7b5
|
||||
#: 4cd716486f994080880f84853b047a5d
|
||||
msgid "VRAM Size"
|
||||
msgstr "显存"
|
||||
|
||||
#: ../../getting_started/install/deploy/deploy.md
|
||||
#: 247159f568e4476ca6c5e78015c7a8f0
|
||||
#: d1b33d0348894bfc8a843a3d38c6daaa
|
||||
msgid "Performance"
|
||||
msgstr "Performance"
|
||||
|
||||
#: ../../getting_started/install/deploy/deploy.md
|
||||
#: 871113cbc58743ef989a366b76e8c645
|
||||
#: d5850bbe7d0a430d993b7e6bd1f24bff
|
||||
msgid "RTX 4090"
|
||||
msgstr "RTX 4090"
|
||||
|
||||
#: ../../getting_started/install/deploy/deploy.md
|
||||
#: 81327b7e9a984ec99cae779743d174df c237f392162c42d28ec694d17c3f281c
|
||||
#: c7d15be08ac74624bbfb5eb4554fc7ff
|
||||
msgid "24 GB"
|
||||
msgstr "24 GB"
|
||||
|
||||
#: ../../getting_started/install/deploy/deploy.md
|
||||
#: 6e19f23bae05467ba03f1ebb194e0c03
|
||||
#: 219dff2fee83460da55d9d628569365e
|
||||
msgid "Smooth conversation inference"
|
||||
msgstr "Smooth conversation inference"
|
||||
msgstr "丝滑的对话体验"
|
||||
|
||||
#: ../../getting_started/install/deploy/deploy.md
|
||||
#: 714a48b2c4a943819819a6af034f1998
|
||||
#: 56025c5f37984963943de7accea85850
|
||||
msgid "RTX 3090"
|
||||
msgstr "RTX 3090"
|
||||
|
||||
#: ../../getting_started/install/deploy/deploy.md
|
||||
#: 06dae55d443c48b1b3fbab85222c3adb
|
||||
#: 8a0b8a0afa0c4cc39eb7c2271775cf60
|
||||
msgid "Smooth conversation inference, better than V100"
|
||||
msgstr "Smooth conversation inference, better than V100"
|
||||
msgstr "丝滑的对话体验,性能好于V100"
|
||||
|
||||
#: ../../getting_started/install/deploy/deploy.md
|
||||
#: 5d50db167b244d65a8be1dab4acda37d
|
||||
#: 2fc5e6ac8a6b4c508944c659adffa0c1
|
||||
msgid "V100"
|
||||
msgstr "V100"
|
||||
|
||||
#: ../../getting_started/install/deploy/deploy.md
|
||||
#: 0d72262c85d148d8b1680d1d9f8fa2c9 e10db632889444a78e123773a30f23cf
|
||||
#: f92a1393539a49db983b06f7276f446b
|
||||
msgid "16 GB"
|
||||
msgstr "16 GB"
|
||||
|
||||
#: ../../getting_started/install/deploy/deploy.md
|
||||
#: 1c0379e653cf46f19d83535c568c54c8 aee8eb48e7804572af351dcfaea5b0fb
|
||||
#: 4e7de52a58d24a0bb10e45e1435128a6
|
||||
msgid "Conversation inference possible, noticeable stutter"
|
||||
msgstr "Conversation inference possible, noticeable stutter"
|
||||
|
||||
#: ../../getting_started/install/deploy/deploy.md
|
||||
#: 5bc90343dcef48c197438f01efe52bfc
|
||||
#: 217fe55f590a497ba6622698945e7be8
|
||||
msgid "T4"
|
||||
msgstr "T4"
|
||||
|
||||
#: ../../getting_started/install/deploy/deploy.md:19
|
||||
#: c9b5f973d19645d39b1892c00526afa7
|
||||
#: ../../getting_started/install/deploy/deploy.md:30
|
||||
#: 30ca67fe27f64df093a2d281e1288c5c
|
||||
#, fuzzy
|
||||
msgid ""
|
||||
"if your VRAM Size is not enough, DB-GPT supported 8-bit quantization and "
|
||||
"If your VRAM Size is not enough, DB-GPT supported 8-bit quantization and "
|
||||
"4-bit quantization."
|
||||
msgstr "如果你的显存不够,DB-GPT支持8-bit和4-bit量化版本"
|
||||
|
||||
#: ../../getting_started/install/deploy/deploy.md:21
|
||||
#: 5e488271eede411d882f62ec8524dd4a
|
||||
#: ../../getting_started/install/deploy/deploy.md:32
|
||||
#: fc0c3a0730d64e9e98d1b25f4dd5db34
|
||||
msgid ""
|
||||
"Here are some of the VRAM size usage of the models we tested in some "
|
||||
"common scenarios."
|
||||
msgstr "这里是量化版本的相关说明"
|
||||
|
||||
#: ../../getting_started/install/deploy/deploy.md
|
||||
#: 2cc65f16fa364088bedd0e58b6871ec8
|
||||
#: 1f1f6c10209b446f99d520fdb68e0f5d
|
||||
msgid "Model"
|
||||
msgstr "Model"
|
||||
|
||||
#: ../../getting_started/install/deploy/deploy.md
|
||||
#: d0e1a0d418f74e4b9f5922b17f0c8fcf
|
||||
#: 18e3240d407e41f88028b24aeced1bf4
|
||||
msgid "Quantize"
|
||||
msgstr "Quantize"
|
||||
|
||||
#: ../../getting_started/install/deploy/deploy.md
|
||||
#: 460b418ab7eb402eae7a0f86d1fda4bf 5e456423a9fa4c0392b08d32f3082f6f
|
||||
#: 03aa79d3c3f54e3c834180b0d1ed9a5c
|
||||
msgid "vicuna-7b-v1.5"
|
||||
msgstr "vicuna-7b-v1.5"
|
||||
|
||||
#: ../../getting_started/install/deploy/deploy.md
|
||||
#: 0f290c12b9324a07affcfd66804b82d7 29c81ce163e749b99035942a3b18582a
|
||||
#: 3a4f4325774d452f8c174cac5fe8de47 584f986a1afb4086a0382a9f7e79c55f
|
||||
#: 994c744ac67249f4a43b3bba360c0bbf aa9c82f660454143b9212842ffe0e0d6
|
||||
#: ac7b00313284410b9253c4a768a30f0c
|
||||
#: 09419ad0a88c4179979505ef71204fd6 1b4ab0186184493d895eeec12d078c52
|
||||
#: 6acec7b76e604343885aa71d92b04d1e 9b73ca1c18d14972b894db69438e3fb2
|
||||
#: b869995505ae4895b9f13e271470e5cb c9eaf983eeb2486da08e628728ae301f
|
||||
#: ff0a86dc63ce4cd580f354d15d333501
|
||||
msgid "4-bit"
|
||||
msgstr "4-bit"
|
||||
|
||||
#: ../../getting_started/install/deploy/deploy.md
|
||||
#: 27401cbb0f2542e2aaa449a586aad2d1 2a1d2d10001f4d9f9b9961c28c592280
|
||||
#: b69a59c6e4a7458c91be814a98502632
|
||||
#: d0d959f022f44bbeb34d67ccf49ba3bd
|
||||
msgid "8 GB"
|
||||
msgstr "8 GB"
|
||||
|
||||
#: ../../getting_started/install/deploy/deploy.md
|
||||
#: 0a15518df1b94492b610e47f3c7bb4f6 1f1852ceae0b4c21a020dc9ef4f8b20b
|
||||
#: 89ad803f6bd24b5d9708a6d4bd48a54f ac7c222678d34637a03546dcb5949668
|
||||
#: b12e1599bdcb4d27ad4e4a83f12de916 c80ba4ddc1634093842a6f284b7b22bb
|
||||
#: f63b900e4b844b3196c4c221b36d31f7
|
||||
#: 01cb7be0064940e8a637df7ed8e15310 13568d8a793b4c2db655f89dc690929a
|
||||
#: 28ce31711f91455b9b910276fa059c65 2dddf2e87a70452fb27a627d62464346
|
||||
#: 3f3f4dc00acb43258dce311f144e0fd7 5aa76fd2fb35474e8d06795e7369ceb4
|
||||
#: d660be499efc4b6ca61da0d5af758620
|
||||
msgid "8-bit"
|
||||
msgstr "8-bit"
|
||||
|
||||
#: ../../getting_started/install/deploy/deploy.md
|
||||
#: 02f72ed48b784b05b2fcaf4ea33fcba8 17285314376044bf9d9a82f9001f39dc
|
||||
#: 403178173a784bdf8d02fe856849a434 4875c6b595484091b622602d9ef0d3e8
|
||||
#: 4b11125d4b0c40c488bffb130f4f2b9f e2418c76e7e04101821f29650d111a4a
|
||||
#: 3b963a1ce6934229ba7658cb407b6a52
|
||||
msgid "12 GB"
|
||||
msgstr "12 GB"
|
||||
|
||||
#: ../../getting_started/install/deploy/deploy.md
|
||||
#: 01dfd16f70cf4128a49ca7bc79f77042 a615efffecb24addba759d05ef61a1c0
|
||||
#: 30d28dcaa64545198aaa20fe4562bb6d
|
||||
msgid "vicuna-13b-v1.5"
|
||||
msgstr "vicuna-13b-v1.5"
|
||||
|
||||
#: ../../getting_started/install/deploy/deploy.md
|
||||
#: 412ddfa6e6fb4567984f757cf74b3bfc 529650341d96466a93153d58ddef0ec9
|
||||
#: 6176929d59bb4e31a37cbba8a81a489f
|
||||
#: 28de25a1952049d2b7aff41020e428ff
|
||||
msgid "20 GB"
|
||||
msgstr "20 GB"
|
||||
|
||||
#: ../../getting_started/install/deploy/deploy.md
|
||||
#: 566b7aa7bc88421a9364cef6bfbeae48 ae32a218d07e44c796ca511972ea2cb0
|
||||
#: 535974c886b14c618ca84de1fe63d5e4
|
||||
msgid "llama-2-7b"
|
||||
msgstr "llama-2-7b"
|
||||
|
||||
#: ../../getting_started/install/deploy/deploy.md
|
||||
#: 1ac748eb518b4017accb98873fe1a8e5 528109c765e54b3caf284e7794abd468
|
||||
#: cc04760a8b9e4a79a7dada9a11abda2c
|
||||
msgid "llama-2-13b"
|
||||
msgstr "llama-2-13b"
|
||||
|
||||
#: ../../getting_started/install/deploy/deploy.md
|
||||
#: dfb5c0fa9e82423ab1de9256b3b3f215 f861be75871d40849f896859d0b8be4c
|
||||
#: 9e83d8d5ae44411dba4cc6c2d796b20f
|
||||
msgid "llama-2-70b"
|
||||
msgstr "llama-2-70b"
|
||||
|
||||
#: ../../getting_started/install/deploy/deploy.md
|
||||
#: 5568529a82cd4c49812ab2fd46ff9bf0
|
||||
#: cb6ce389adfc463a9c851eb1e4abfcff
|
||||
msgid "48 GB"
|
||||
msgstr "48 GB"
|
||||
|
||||
#: ../../getting_started/install/deploy/deploy.md
|
||||
#: 4ba730f4faa64df9a0a9f72cb3eb0c88
|
||||
#: 906d664156084223a4efa0ae9804bd33
|
||||
msgid "80 GB"
|
||||
msgstr "80 GB"
|
||||
|
||||
#: ../../getting_started/install/deploy/deploy.md
|
||||
#: 47221748d6d5417abc25e28b6905bc6f 6023d535095a4cb9a99343c2dfddc927
|
||||
#: 957fb0c6f3114a63ba33a1cfb31060e3
|
||||
msgid "baichuan-7b"
|
||||
msgstr "baichuan-7b"
|
||||
|
||||
#: ../../getting_started/install/deploy/deploy.md
|
||||
#: 55011d4e0bed451dbdda75cb8b258fa5 bc296e4bd582455ca64afc74efb4ebc8
|
||||
#: 5f3bc4cf57d946cfb38a941250685151
|
||||
msgid "baichuan-13b"
|
||||
msgstr "baichuan-13b"
|
||||
|
||||
#: ../../getting_started/install/deploy/deploy.md:40
|
||||
#: 4bfd52634a974776933c93227f419cdb
|
||||
#: ../../getting_started/install/deploy/deploy.md:51
|
||||
#: 87ae8c58df314b69ae119aa831cb7dd5
|
||||
msgid "2. Install"
|
||||
msgstr "2. Install"
|
||||
|
||||
#: ../../getting_started/install/deploy/deploy.md:45
|
||||
#: 647f09001d4c4124bed11da272306946
|
||||
#: ../../getting_started/install/deploy/deploy.md:56
|
||||
#: 79cdebf089614761bf4299a9ce601b81
|
||||
msgid ""
|
||||
"We use Sqlite as default database, so there is no need for database "
|
||||
"installation. If you choose to connect to other databases, you can "
|
||||
@ -239,49 +276,49 @@ msgstr ""
|
||||
"GPT快速部署不需要部署相关数据库服务。如果你想使用其他数据库,需要先部署相关数据库服务。我们目前使用Miniconda进行python环境和包依赖管理[安装"
|
||||
" Miniconda](https://docs.conda.io/en/latest/miniconda.html)"
|
||||
|
||||
#: ../../getting_started/install/deploy/deploy.md:54
|
||||
#: bf9fcf320ca94dbd855016088800b1a9
|
||||
#: ../../getting_started/install/deploy/deploy.md:65
|
||||
#: 03ff2f444721454588095bb348220276
|
||||
msgid "Before use DB-GPT Knowledge"
|
||||
msgstr "在使用知识库之前"
|
||||
|
||||
#: ../../getting_started/install/deploy/deploy.md:60
|
||||
#: e0cb6cb46a474c4ca16edf73c82b58ca
|
||||
#: ../../getting_started/install/deploy/deploy.md:71
|
||||
#: b6faa4d078a046d6a7c0313e8deef0f3
|
||||
msgid ""
|
||||
"Once the environment is installed, we have to create a new folder "
|
||||
"\"models\" in the DB-GPT project, and then we can put all the models "
|
||||
"downloaded from huggingface in this directory"
|
||||
msgstr "如果你已经安装好了环境需要创建models, 然后到huggingface官网下载模型"
|
||||
|
||||
#: ../../getting_started/install/deploy/deploy.md:63
|
||||
#: 03b1bf35528d4cdeb735047aa840d6fe
|
||||
#: ../../getting_started/install/deploy/deploy.md:74
|
||||
#: f43fd2b74d994bf6bb4016e88c43d51a
|
||||
msgid "Notice make sure you have install git-lfs"
|
||||
msgstr ""
|
||||
|
||||
#: ../../getting_started/install/deploy/deploy.md:65
|
||||
#: f8183907e7c044f695f86943b412d84a
|
||||
#: ../../getting_started/install/deploy/deploy.md:76
|
||||
#: f558a7ee728a4344af576aa375b43092
|
||||
msgid "centos:yum install git-lfs"
|
||||
msgstr ""
|
||||
|
||||
#: ../../getting_started/install/deploy/deploy.md:67
|
||||
#: 3bc042bd5cac4007afc9f68e7b5044fe
|
||||
msgid "ubuntu:app-get install git-lfs"
|
||||
#: ../../getting_started/install/deploy/deploy.md:78
|
||||
#: bab08604a3ba45b9b827ff5a4b931601
|
||||
msgid "ubuntu:apt-get install git-lfs"
|
||||
msgstr ""
|
||||
|
||||
#: ../../getting_started/install/deploy/deploy.md:69
|
||||
#: 5915ed1290e84ed9b6782c6733d88891
|
||||
#: ../../getting_started/install/deploy/deploy.md:80
|
||||
#: b4a107e5f8524acc9aed74318880f9f3
|
||||
msgid "macos:brew install git-lfs"
|
||||
msgstr ""
|
||||
|
||||
#: ../../getting_started/install/deploy/deploy.md:86
|
||||
#: 104f1e75b0a54300af440ca3b64217a3
|
||||
#: ../../getting_started/install/deploy/deploy.md:97
|
||||
#: ecb5fa1f18154685bb4336d04ac3a386
|
||||
msgid ""
|
||||
"The model files are large and will take a long time to download. During "
|
||||
"the download, let's configure the .env file, which needs to be copied and"
|
||||
" created from the .env.template"
|
||||
msgstr "模型文件很大,需要很长时间才能下载。在下载过程中,让我们配置.env文件,它需要从。env.template中复制和创建。"
|
||||
|
||||
#: ../../getting_started/install/deploy/deploy.md:88
|
||||
#: 228c6729c23f4e17b0475b834d7edb01
|
||||
#: ../../getting_started/install/deploy/deploy.md:99
|
||||
#: 0f08b0ecbea14cbdba29ea8d87cf24b4
|
||||
msgid ""
|
||||
"if you want to use openai llm service, see [LLM Use FAQ](https://db-"
|
||||
"gpt.readthedocs.io/en/latest/getting_started/faq/llm/llm_faq.html)"
|
||||
@ -289,20 +326,20 @@ msgstr ""
|
||||
"如果想使用openai大模型服务, 可以参考[LLM Use FAQ](https://db-"
|
||||
"gpt.readthedocs.io/en/latest/getting_started/faq/llm/llm_faq.html)"
|
||||
|
||||
#: ../../getting_started/install/deploy/deploy.md:91
|
||||
#: c444514ba77b46468721888fe7df9e74
|
||||
#: ../../getting_started/install/deploy/deploy.md:102
|
||||
#: 6efb9a45ab2c45c7b4770f987b639c52
|
||||
msgid "cp .env.template .env"
|
||||
msgstr "cp .env.template .env"
|
||||
|
||||
#: ../../getting_started/install/deploy/deploy.md:94
|
||||
#: 1514e937757e461189b369da73884a6c
|
||||
#: ../../getting_started/install/deploy/deploy.md:105
|
||||
#: b9d2b81a2cf440c3b49a5c06759eb2ba
|
||||
msgid ""
|
||||
"You can configure basic parameters in the .env file, for example setting "
|
||||
"LLM_MODEL to the model to be used"
|
||||
msgstr "您可以在.env文件中配置基本参数,例如将LLM_MODEL设置为要使用的模型。"
|
||||
|
||||
#: ../../getting_started/install/deploy/deploy.md:96
|
||||
#: 4643cdf76bd947fdb86fc4691b98935c
|
||||
#: ../../getting_started/install/deploy/deploy.md:107
|
||||
#: 2f6afa40ca994115b16ba28baaf65bde
|
||||
msgid ""
|
||||
"([Vicuna-v1.5](https://huggingface.co/lmsys/vicuna-13b-v1.5) based on "
|
||||
"llama-2 has been released, we recommend you set `LLM_MODEL=vicuna-"
|
||||
@ -312,51 +349,51 @@ msgstr ""
|
||||
"/vicuna-13b-v1.5), "
|
||||
"目前Vicuna-v1.5模型(基于llama2)已经开源了,我们推荐你使用这个模型通过设置LLM_MODEL=vicuna-13b-v1.5"
|
||||
|
||||
#: ../../getting_started/install/deploy/deploy.md:98
|
||||
#: acf91810f12b4ad0bd830299eb24850f
|
||||
#: ../../getting_started/install/deploy/deploy.md:109
|
||||
#: 7c5883f9594646198f464e6dafb2f0ff
|
||||
msgid "3. Run"
|
||||
msgstr "3. Run"
|
||||
|
||||
#: ../../getting_started/install/deploy/deploy.md:100
|
||||
#: ea82d67451724c2399f8903ea3c52dff
|
||||
#: ../../getting_started/install/deploy/deploy.md:111
|
||||
#: 0e3719a238eb4332b7c15efa3f16e3e2
|
||||
msgid "**(Optional) load examples into SQLlite**"
|
||||
msgstr ""
|
||||
|
||||
#: ../../getting_started/install/deploy/deploy.md:105
|
||||
#: a00987ec21364389b7feec58b878c2a1
|
||||
#: ../../getting_started/install/deploy/deploy.md:116
|
||||
#: c901055131ce4688b1c602393913b675
|
||||
msgid "On windows platform:"
|
||||
msgstr ""
|
||||
|
||||
#: ../../getting_started/install/deploy/deploy.md:110
|
||||
#: db5c000e6abe4e1cb94e6f4f14247eb7
|
||||
#: ../../getting_started/install/deploy/deploy.md:121
|
||||
#: 777a50f9167c4b8f9c2a96682ccc4c4a
|
||||
msgid "1.Run db-gpt server"
|
||||
msgstr "1.Run db-gpt server"
|
||||
|
||||
#: ../../getting_started/install/deploy/deploy.md:116
|
||||
#: dbeecff230174132b85d1d4549d3c07e
|
||||
#: ../../getting_started/install/deploy/deploy.md:127
|
||||
#: 62aafb652df8478281ab633d8d082e7f
|
||||
msgid "Open http://localhost:5000 with your browser to see the product."
|
||||
msgstr "打开浏览器访问http://localhost:5000"
|
||||
|
||||
#: ../../getting_started/install/deploy/deploy.md:119
|
||||
#: 22d6321e6226472e878a95d3c8a9aad8
|
||||
#: ../../getting_started/install/deploy/deploy.md:130
|
||||
#: cff18fc20ffd4716bc7cf377730dd5ec
|
||||
msgid "If you want to access an external LLM service, you need to"
|
||||
msgstr ""
|
||||
|
||||
#: ../../getting_started/install/deploy/deploy.md:121
|
||||
#: 561dfe9a864540d6ac582f0977b2c9ad
|
||||
#: ../../getting_started/install/deploy/deploy.md:132
|
||||
#: f27c3aa9e627480a96cd04fcd4bfdaec
|
||||
msgid ""
|
||||
"1.set the variables LLM_MODEL=YOUR_MODEL_NAME, "
|
||||
"MODEL_SERVER=YOUR_MODEL_SERVER(eg:http://localhost:5000) in the .env "
|
||||
"file."
|
||||
msgstr ""
|
||||
|
||||
#: ../../getting_started/install/deploy/deploy.md:123
|
||||
#: 55ceca48e40147a99ab4d23392349156
|
||||
#: ../../getting_started/install/deploy/deploy.md:134
|
||||
#: e05a395f67924514929cd025fab67e44
|
||||
msgid "2.execute dbgpt_server.py in light mode"
|
||||
msgstr ""
|
||||
|
||||
#: ../../getting_started/install/deploy/deploy.md:126
|
||||
#: 02d42956a2734c739ad1cb9ce59142ce
|
||||
#: ../../getting_started/install/deploy/deploy.md:137
|
||||
#: a5d7fcb46ba446bf9913646b28b036ed
|
||||
msgid ""
|
||||
"If you want to learn about dbgpt-webui, read https://github./csunny/DB-"
|
||||
"GPT/tree/new-page-framework/datacenter"
|
||||
@ -364,55 +401,55 @@ msgstr ""
|
||||
"如果你想了解web-ui, 请访问https://github./csunny/DB-GPT/tree/new-page-"
|
||||
"framework/datacenter"
|
||||
|
||||
#: ../../getting_started/install/deploy/deploy.md:132
|
||||
#: d813eb43b97445a08e058d336249e6f6
|
||||
#: ../../getting_started/install/deploy/deploy.md:143
|
||||
#: 90c614e7744c4a7f843adb8968b58c78
|
||||
#, fuzzy
|
||||
msgid "Multiple GPUs"
|
||||
msgstr "4. Multiple GPUs"
|
||||
|
||||
#: ../../getting_started/install/deploy/deploy.md:134
|
||||
#: 0ac795f274d24de7b37f9584763e113d
|
||||
#: ../../getting_started/install/deploy/deploy.md:145
|
||||
#: 7b72e7cbd9d246299de5986772df4825
|
||||
msgid ""
|
||||
"DB-GPT will use all available gpu by default. And you can modify the "
|
||||
"setting `CUDA_VISIBLE_DEVICES=0,1` in `.env` file to use the specific gpu"
|
||||
" IDs."
|
||||
msgstr "DB-GPT默认加载可利用的gpu,你也可以通过修改 在`.env`文件 `CUDA_VISIBLE_DEVICES=0,1`来指定gpu IDs"
|
||||
|
||||
#: ../../getting_started/install/deploy/deploy.md:136
|
||||
#: 2be557e2b5414d478d375bce0474558d
|
||||
#: ../../getting_started/install/deploy/deploy.md:147
|
||||
#: b7e2f7bbf625464489b3fd9aedb0ed59
|
||||
msgid ""
|
||||
"Optionally, you can also specify the gpu ID to use before the starting "
|
||||
"command, as shown below:"
|
||||
msgstr "你也可以指定gpu ID启动"
|
||||
|
||||
#: ../../getting_started/install/deploy/deploy.md:146
|
||||
#: 222f1ebb5cb64675a0c319552d14303e
|
||||
#: ../../getting_started/install/deploy/deploy.md:157
|
||||
#: 69fd2183a143428fb77949f58381d455
|
||||
msgid ""
|
||||
"You can modify the setting `MAX_GPU_MEMORY=xxGib` in `.env` file to "
|
||||
"configure the maximum memory used by each GPU."
|
||||
msgstr "同时你可以通过在.env文件设置`MAX_GPU_MEMORY=xxGib`修改每个GPU的最大使用内存"
|
||||
|
||||
#: ../../getting_started/install/deploy/deploy.md:148
|
||||
#: fb92349f9fe049d5b23b9ead17caf895
|
||||
#: ../../getting_started/install/deploy/deploy.md:159
|
||||
#: 6cd03b9728f943a4a632aa9b061931f0
|
||||
#, fuzzy
|
||||
msgid "Not Enough Memory"
|
||||
msgstr "5. Not Enough Memory"
|
||||
|
||||
#: ../../getting_started/install/deploy/deploy.md:150
|
||||
#: 30a1105d728a474c9cd14638feab4b59
|
||||
#: ../../getting_started/install/deploy/deploy.md:161
|
||||
#: 4837aba4c80b42819c1a6345de0aa820
|
||||
msgid "DB-GPT supported 8-bit quantization and 4-bit quantization."
|
||||
msgstr "DB-GPT 支持 8-bit quantization 和 4-bit quantization."
|
||||
|
||||
#: ../../getting_started/install/deploy/deploy.md:152
|
||||
#: eb2e576379434bfa828c98ee374149f5
|
||||
#: ../../getting_started/install/deploy/deploy.md:163
|
||||
#: c1a701e9bc4c4439adfb930d0e953cec
|
||||
msgid ""
|
||||
"You can modify the setting `QUANTIZE_8bit=True` or `QUANTIZE_4bit=True` "
|
||||
"in `.env` file to use quantization(8-bit quantization is enabled by "
|
||||
"default)."
|
||||
msgstr "你可以通过在.env文件设置`QUANTIZE_8bit=True` or `QUANTIZE_4bit=True`"
|
||||
|
||||
#: ../../getting_started/install/deploy/deploy.md:154
|
||||
#: eeaecfd77d8546a6afc1357f9f1684bf
|
||||
#: ../../getting_started/install/deploy/deploy.md:165
|
||||
#: 205c101f1f774130a5853dd9b7373d36
|
||||
msgid ""
|
||||
"Llama-2-70b with 8-bit quantization can run with 80 GB of VRAM, and 4-bit"
|
||||
" quantization can run with 48 GB of VRAM."
|
||||
@ -468,3 +505,6 @@ msgstr ""
|
||||
#~ "注意,需要安装[requirements.txt](https://github.com/eosphoros-ai/DB-"
|
||||
#~ "GPT/blob/main/requirements.txt)涉及的所有的依赖"
|
||||
|
||||
#~ msgid "ubuntu:app-get install git-lfs"
|
||||
#~ msgstr ""
|
||||
|
||||
|
@ -8,7 +8,7 @@ msgid ""
|
||||
msgstr ""
|
||||
"Project-Id-Version: DB-GPT 0.3.0\n"
|
||||
"Report-Msgid-Bugs-To: \n"
|
||||
"POT-Creation-Date: 2023-06-14 21:47+0800\n"
|
||||
"POT-Creation-Date: 2023-10-17 17:24+0800\n"
|
||||
"PO-Revision-Date: YEAR-MO-DA HO:MI+ZONE\n"
|
||||
"Last-Translator: FULL NAME <EMAIL@ADDRESS>\n"
|
||||
"Language: zh_CN\n"
|
||||
@ -19,86 +19,46 @@ msgstr ""
|
||||
"Content-Transfer-Encoding: 8bit\n"
|
||||
"Generated-By: Babel 2.12.1\n"
|
||||
|
||||
#: ../../use_cases/tool_use_with_plugin.md:1 584817fdb00047de8f8d7ae02ce86783
|
||||
#: ../../use_cases/tool_use_with_plugin.md:1 1fb6c590034347ff9bf374dcf0a63fd3
|
||||
msgid "Tool use with plugin"
|
||||
msgstr "插件工具"
|
||||
|
||||
#: ../../use_cases/tool_use_with_plugin.md:3 74d688e857ee4afe9237aa959238d3df
|
||||
#: ../../use_cases/tool_use_with_plugin.md:3 b48206ede79641fdabb3afd4c5f7fa7e
|
||||
msgid ""
|
||||
"DB-GPT supports a variety of plug-ins, such as MySQL, MongoDB, ClickHouse"
|
||||
" and other database tool plug-ins. In addition, some database management "
|
||||
"platforms can also package their interfaces and package them into plug-"
|
||||
"ins, and use the model to realize the ability of \"single-sentence "
|
||||
"requirements\""
|
||||
"DB-GPT supports a variety of plug-ins, such as BaiduSearch, SendEmail. In"
|
||||
" addition, some database management platforms can also package their "
|
||||
"interfaces and package them into plug-ins, and use the model to realize "
|
||||
"the ability of \"single-sentence requirements\""
|
||||
msgstr ""
|
||||
|
||||
#: ../../use_cases/tool_use_with_plugin.md:6 55754e6c89d149cd9eb5f935fd9dc761
|
||||
msgid "DB-GPT-DASHBOARD-PLUGIN"
|
||||
#: ../../use_cases/tool_use_with_plugin.md:6 e90be2eb88c140b5b0ac3e6b6fac76bc
|
||||
msgid "Baidu-Search-Plugin"
|
||||
msgstr ""
|
||||
|
||||
#: ../../use_cases/tool_use_with_plugin.md:8 d3c0287afa81409f9bda6fc495d63917
|
||||
#: ../../use_cases/tool_use_with_plugin.md:8 0b98dfd78d49426098974d3d9c2d962b
|
||||
msgid ""
|
||||
"[](https://github.com/csunny/DB-GPT-"
|
||||
"[Db-GPT Plugins](https://github.com/eosphoros-ai/DB-GPT-"
|
||||
"Plugins/blob/main/src/dbgpt_plugins/Readme.md)"
|
||||
msgstr ""
|
||||
|
||||
#: ../../use_cases/tool_use_with_plugin.md:10 a65c05f21ee94e8da1f14076dbed8123
|
||||
#: ../../use_cases/tool_use_with_plugin.md:10 c34f612a2ec449548ec90d3bcbf5d9a0
|
||||
msgid ""
|
||||
"This is a DB-GPT plugin to generate data analysis charts, if you want to "
|
||||
"use the test sample data, please first pull the code of [DB-GPT-"
|
||||
"Plugins](https://github.com/csunny/DB-GPT-Plugins), run the command to "
|
||||
"generate test DuckDB data, and then copy the generated data file to the "
|
||||
"`/pilot/mock_datas` directory of the DB-GPT project."
|
||||
"Perform search queries using the Baidu search engine [DB-GPT-"
|
||||
"Plugins](https://github.com/eosphoros-ai/DB-GPT-Plugins)."
|
||||
msgstr ""
|
||||
|
||||
#: ../../use_cases/tool_use_with_plugin.md:21 c25ef922010442f5be632f6d8f2e730c
|
||||
#: ../../use_cases/tool_use_with_plugin.md:21 81638eb1f4f34b39a1ce383f6ef5720f
|
||||
msgid ""
|
||||
"Test Case: Use a histogram to analyze the total order amount of users in "
|
||||
"different cities."
|
||||
msgstr ""
|
||||
|
||||
#: ../../use_cases/tool_use_with_plugin.md:26 3f07d6e71ced4011998b1f1fda640394
|
||||
#: ../../use_cases/tool_use_with_plugin.md:26 8cf2cbbff8cc408c9e885a406d34dbcb
|
||||
msgid ""
|
||||
"More detail see: [DB-DASHBOARD](https://github.com/csunny/DB-GPT-"
|
||||
"More detail see: [DB-DASHBOARD](https://github.com/eosphoros-ai/DB-GPT-"
|
||||
"Plugins/blob/main/src/dbgpt_plugins/Readme.md)"
|
||||
msgstr ""
|
||||
|
||||
#: ../../use_cases/tool_use_with_plugin.md:29 20e5d3aed30847ccac905d0d5268824f
|
||||
msgid "DB-GPT-SQL-Execution-Plugin"
|
||||
msgstr ""
|
||||
|
||||
#: ../../use_cases/tool_use_with_plugin.md:32 4ebfd33a77e547edb1de9d3159745cb6
|
||||
msgid "This is an DbGPT plugin to connect Generic Db And Execute SQL."
|
||||
msgstr ""
|
||||
|
||||
#: ../../use_cases/tool_use_with_plugin.md:35 8c11ec372d9346e79e5ebba390b15919
|
||||
msgid "DB-GPT-Bytebase-Plugin"
|
||||
msgstr ""
|
||||
|
||||
#: ../../use_cases/tool_use_with_plugin.md:37 b01eb72df51648a293613dbab2bbe4f0
|
||||
msgid ""
|
||||
"To use a tool or platform plugin, you should first deploy a plugin. "
|
||||
"Taking the open-source database management platform Bytebase as an "
|
||||
"example, you can deploy your Bytebase service with one click using Docker"
|
||||
" and access it at http://127.0.0.1:5678. More details can be found at "
|
||||
"https://github.com/bytebase/bytebase."
|
||||
msgstr ""
|
||||
|
||||
#: ../../use_cases/tool_use_with_plugin.md:53 1cdcd5fc42b6433ba5573fc157328c5c
|
||||
msgid ""
|
||||
"Note: If your machine's CPU architecture is `ARM`, please use `--platform"
|
||||
" linux/arm64` instead."
|
||||
msgstr ""
|
||||
|
||||
#: ../../use_cases/tool_use_with_plugin.md:55 179dc86ad25f4498af7c90f570f1a556
|
||||
msgid ""
|
||||
"Select the plugin on DB-GPT(All built-in plugins are from our repository:"
|
||||
" https://github.com/csunny/DB-GPT-Plugins),choose DB-GPT-Bytebase-Plugin."
|
||||
" Supporting functions include creating projects, creating environments, "
|
||||
"creating database instances, creating databases, database DDL/DML "
|
||||
"operations, and ticket approval process, etc."
|
||||
msgstr ""
|
||||
|
||||
#~ msgid ""
|
||||
#~ "DB-GPT supports a variety of "
|
||||
#~ "plug-ins, such as MySQL, MongoDB, "
|
||||
@ -110,11 +70,9 @@ msgstr ""
|
||||
#~ " realize the ability of \"single-"
|
||||
#~ "sentence requirements\""
|
||||
#~ msgstr ""
|
||||
#~ "DB-"
|
||||
#~ "GPT支持各种插件,例如MySQL、MongoDB、ClickHouse等数据库工具插件。此外,一些数据库管理平台也可以将它们的接口打包成插件,使用该模型实现\"一句话需求\"的能力。"
|
||||
|
||||
#~ msgid "DB-GPT-DASHBOARD-PLUGIN"
|
||||
#~ msgstr "DB-GPT-DASHBOARD-PLUGIN"
|
||||
#~ msgstr ""
|
||||
|
||||
#~ msgid ""
|
||||
#~ "[Db-GPT Chart Plugin](https://github.com/csunny"
|
||||
@ -135,9 +93,6 @@ msgstr ""
|
||||
#~ "the `/pilot/mock_datas` directory of the "
|
||||
#~ "DB-GPT project."
|
||||
#~ msgstr ""
|
||||
#~ "这是一个DB-GPT插件,用于生成数据分析图表。如果您想使用测试样本数据,请先拉取 DB-GPT-"
|
||||
#~ "Plugins 的代码,运行命令以生成测试 DuckDB 数据,然后将生成的数据文件复制到 "
|
||||
#~ "DB-GPT 项目的 /pilot/mock_datas 目录中。"
|
||||
|
||||
#~ msgid ""
|
||||
#~ "Test Case: Use a histogram to "
|
||||
@ -150,17 +105,15 @@ msgstr ""
|
||||
#~ "DASHBOARD](https://github.com/csunny/DB-GPT-"
|
||||
#~ "Plugins/blob/main/src/dbgpt_plugins/Readme.md)"
|
||||
#~ msgstr ""
|
||||
#~ "更多详情请看:[DB-DASHBOARD](https://github.com/csunny/DB-GPT-"
|
||||
#~ "Plugins/blob/main/src/dbgpt_plugins/Readme.md)"
|
||||
|
||||
#~ msgid "DB-GPT-SQL-Execution-Plugin"
|
||||
#~ msgstr "DB-GPT-SQL-Execution-Plugin"
|
||||
#~ msgstr ""
|
||||
|
||||
#~ msgid "This is an DbGPT plugin to connect Generic Db And Execute SQL."
|
||||
#~ msgstr "这是一个 DbGPT 插件,用于连接通用数据库并执行 SQL。"
|
||||
#~ msgstr ""
|
||||
|
||||
#~ msgid "DB-GPT-Bytebase-Plugin"
|
||||
#~ msgstr "DB-GPT-Bytebase-Plugin"
|
||||
#~ msgstr ""
|
||||
|
||||
#~ msgid ""
|
||||
#~ "To use a tool or platform plugin,"
|
||||
@ -173,14 +126,12 @@ msgstr ""
|
||||
#~ " More details can be found at "
|
||||
#~ "https://github.com/bytebase/bytebase."
|
||||
#~ msgstr ""
|
||||
#~ "要使用一个工具或平台插件,您应该首先部署一个插件。以开源数据库管理平台Bytebase为例,您可以使用Docker一键部署Bytebase服务,并通过http://127.0.0.1:5678进行访问。更多细节可以在"
|
||||
#~ " https://github.com/bytebase/bytebase 找到。"
|
||||
|
||||
#~ msgid ""
|
||||
#~ "Note: If your machine's CPU architecture"
|
||||
#~ " is `ARM`, please use `--platform "
|
||||
#~ "linux/arm64` instead."
|
||||
#~ msgstr "备注:如果你的机器CPU架构是ARM,请使用--platform linux/arm64 代替"
|
||||
#~ msgstr ""
|
||||
|
||||
#~ msgid ""
|
||||
#~ "Select the plugin on DB-GPT(All "
|
||||
@ -193,7 +144,9 @@ msgstr ""
|
||||
#~ "database DDL/DML operations, and ticket "
|
||||
#~ "approval process, etc."
|
||||
#~ msgstr ""
|
||||
#~ "在DB-GPT上选择插件(所有内置插件均来自我们的仓库:https://github.com/csunny/DB-"
|
||||
#~ "GPT-Plugins),选择DB-GPT-Bytebase-"
|
||||
#~ "Plugin。支持的功能包括创建项目、创建环境、创建数据库实例、创建数据库、数据库DDL/DML操作和审批流程等。"
|
||||
|
||||
#~ msgid ""
|
||||
#~ "[](https://github.com/csunny/DB-GPT-"
|
||||
#~ "Plugins/blob/main/src/dbgpt_plugins/Readme.md)"
|
||||
#~ msgstr ""
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user