mirror of
https://github.com/csunny/DB-GPT.git
synced 2025-09-14 05:31:40 +00:00
rm fschat relay
This commit is contained in:
121
pilot/model/compression.py
Normal file
121
pilot/model/compression.py
Normal file
@@ -0,0 +1,121 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
import dataclasses
|
||||
|
||||
import torch
|
||||
from torch import Tensor
|
||||
import torch.nn as nn
|
||||
from torch.nn import functional as F
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class CompressionConfig:
|
||||
"""Group-wise quantization."""
|
||||
num_bits: int
|
||||
group_size: int
|
||||
group_dim: int
|
||||
symmetric: bool
|
||||
enabled: bool = True
|
||||
|
||||
|
||||
default_compression_config = CompressionConfig(
|
||||
num_bits=8, group_size=256, group_dim=1, symmetric=True, enabled=True)
|
||||
|
||||
|
||||
class CLinear(nn.Module):
|
||||
"""Compressed Linear Layer."""
|
||||
|
||||
def __init__(self, weight, bias, device):
|
||||
super().__init__()
|
||||
|
||||
self.weight = compress(weight.data.to(device), default_compression_config)
|
||||
self.bias = bias
|
||||
|
||||
def forward(self, input: Tensor) -> Tensor:
|
||||
weight = decompress(self.weight, default_compression_config)
|
||||
return F.linear(input, weight, self.bias)
|
||||
|
||||
|
||||
def compress_module(module, target_device):
|
||||
for attr_str in dir(module):
|
||||
target_attr = getattr(module, attr_str)
|
||||
if type(target_attr) == torch.nn.Linear:
|
||||
setattr(module, attr_str,
|
||||
CLinear(target_attr.weight, target_attr.bias, target_device))
|
||||
for name, child in module.named_children():
|
||||
compress_module(child, target_device)
|
||||
|
||||
|
||||
def compress(tensor, config):
|
||||
"""Simulate group-wise quantization."""
|
||||
if not config.enabled:
|
||||
return tensor
|
||||
|
||||
group_size, num_bits, group_dim, symmetric = (
|
||||
config.group_size, config.num_bits, config.group_dim, config.symmetric)
|
||||
assert num_bits <= 8
|
||||
|
||||
original_shape = tensor.shape
|
||||
num_groups = (original_shape[group_dim] + group_size - 1) // group_size
|
||||
new_shape = (original_shape[:group_dim] + (num_groups, group_size) +
|
||||
original_shape[group_dim+1:])
|
||||
|
||||
# Pad
|
||||
pad_len = (group_size - original_shape[group_dim] % group_size) % group_size
|
||||
if pad_len != 0:
|
||||
pad_shape = original_shape[:group_dim] + (pad_len,) + original_shape[group_dim+1:]
|
||||
tensor = torch.cat([
|
||||
tensor,
|
||||
torch.zeros(pad_shape, dtype=tensor.dtype, device=tensor.device)],
|
||||
dim=group_dim)
|
||||
data = tensor.view(new_shape)
|
||||
|
||||
# Quantize
|
||||
if symmetric:
|
||||
B = 2 ** (num_bits - 1) - 1
|
||||
scale = B / torch.max(data.abs(), dim=group_dim + 1, keepdim=True)[0]
|
||||
data = data * scale
|
||||
data = data.clamp_(-B, B).round_().to(torch.int8)
|
||||
return data, scale, original_shape
|
||||
else:
|
||||
B = 2 ** num_bits - 1
|
||||
mn = torch.min(data, dim=group_dim + 1, keepdim=True)[0]
|
||||
mx = torch.max(data, dim=group_dim + 1, keepdim=True)[0]
|
||||
|
||||
scale = B / (mx - mn)
|
||||
data = data - mn
|
||||
data.mul_(scale)
|
||||
|
||||
data = data.clamp_(0, B).round_().to(torch.uint8)
|
||||
return data, mn, scale, original_shape
|
||||
|
||||
|
||||
def decompress(packed_data, config):
|
||||
"""Simulate group-wise dequantization."""
|
||||
if not config.enabled:
|
||||
return packed_data
|
||||
|
||||
group_size, num_bits, group_dim, symmetric = (
|
||||
config.group_size, config.num_bits, config.group_dim, config.symmetric)
|
||||
|
||||
# Dequantize
|
||||
if symmetric:
|
||||
data, scale, original_shape = packed_data
|
||||
data = data / scale
|
||||
else:
|
||||
data, mn, scale, original_shape = packed_data
|
||||
data = data / scale
|
||||
data.add_(mn)
|
||||
|
||||
# Unpad
|
||||
pad_len = (group_size - original_shape[group_dim] % group_size) % group_size
|
||||
if pad_len:
|
||||
padded_original_shape = (
|
||||
original_shape[:group_dim] +
|
||||
(original_shape[group_dim] + pad_len,) +
|
||||
original_shape[group_dim+1:])
|
||||
data = data.reshape(padded_original_shape)
|
||||
indices = [slice(0, x) for x in original_shape]
|
||||
return data[indices].contiguous()
|
||||
else:
|
||||
return data.view(original_shape)
|
Reference in New Issue
Block a user