fix: merge embedding

This commit is contained in:
csunny 2023-05-18 20:18:41 +08:00
commit 85cb42f5f0
13 changed files with 284 additions and 22 deletions

3
.gitignore vendored
View File

@ -136,4 +136,5 @@ dmypy.json
.DS_Store
logs
nltk_data
.vectordb
.vectordb
pilot/data/

View File

@ -20,8 +20,10 @@ DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
LLM_MODEL_CONFIG = {
"flan-t5-base": os.path.join(MODEL_PATH, "flan-t5-base"),
"vicuna-13b": os.path.join(MODEL_PATH, "vicuna-13b"),
"text2vec": os.path.join(MODEL_PATH, "text2vec-large-chinese"),
"sentence-transforms": os.path.join(MODEL_PATH, "all-MiniLM-L6-v2")
}
# Load model config
ISLOAD_8BIT = True
ISDEBUG = False
@ -29,4 +31,4 @@ ISDEBUG = False
VECTOR_SEARCH_TOP_K = 3
VS_ROOT_PATH = os.path.join(os.path.dirname(os.path.dirname(__file__)), "vs_store")
KNOWLEDGE_UPLOAD_ROOT_PATH = os.path.join(os.path.dirname(os.path.dirname(__file__)), "knowledge")
KNOWLEDGE_UPLOAD_ROOT_PATH = os.path.join(os.path.dirname(os.path.dirname(__file__)), "data")

View File

@ -247,6 +247,13 @@ conv_qa_prompt_template = """ 基于以下已知的信息, 专业、简要的回
{question}
"""
# conv_qa_prompt_template = """ Please provide the known information so that I can professionally and briefly answer the user's question. If the answer cannot be obtained from the provided content,
# please say: "The information provided in the knowledge base is insufficient to answer this question." Fabrication is prohibited.。
# known information:
# {context}
# question:
# {question}
# """
default_conversation = conv_one_shot
conversation_sql_mode ={

View File

@ -19,7 +19,7 @@ from langchain import PromptTemplate
ROOT_PATH = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
sys.path.append(ROOT_PATH)
from pilot.configs.model_config import KNOWLEDGE_UPLOAD_ROOT_PATH, LLM_MODEL_CONFIG
from pilot.configs.model_config import DB_SETTINGS, KNOWLEDGE_UPLOAD_ROOT_PATH, LLM_MODEL_CONFIG, TOP_RETURN_SIZE
from pilot.server.vectordb_qa import KnownLedgeBaseQA
from pilot.connections.mysql import MySQLOperator
from pilot.source_embedding.knowledge_embedding import KnowledgeEmbedding
@ -256,11 +256,13 @@ def http_bot(state, mode, sql_mode, db_selector, temperature, max_new_tokens, re
if mode == conversation_types["custome"] and not db_selector:
persist_dir = os.path.join(KNOWLEDGE_UPLOAD_ROOT_PATH, vector_store_name["vs_name"] + ".vectordb")
print("向量数据库持久化地址: ", persist_dir)
knowledge_embedding_client = KnowledgeEmbedding(file_path="", model_name=LLM_MODEL_CONFIG["sentence-transforms"], vector_store_config={"vector_store_name": vector_store_name["vs_name"],
print("vector store path: ", persist_dir)
knowledge_embedding_client = KnowledgeEmbedding(file_path="", model_name=LLM_MODEL_CONFIG["text2vec"],
local_persist=False,
vector_store_config={"vector_store_name": vector_store_name["vs_name"],
"vector_store_path": KNOWLEDGE_UPLOAD_ROOT_PATH})
query = state.messages[-2][1]
docs = knowledge_embedding_client.similar_search(query, 1)
docs = knowledge_embedding_client.similar_search(query, TOP_RETURN_SIZE)
context = [d.page_content for d in docs]
prompt_template = PromptTemplate(
template=conv_qa_prompt_template,
@ -269,6 +271,20 @@ def http_bot(state, mode, sql_mode, db_selector, temperature, max_new_tokens, re
result = prompt_template.format(context="\n".join(context), question=query)
state.messages[-2][1] = result
prompt = state.get_prompt()
print("prompt length:" + str(len(prompt)))
if len(prompt) > 4000:
logger.info("prompt length greater than 4000, rebuild")
context = context[:2000]
prompt_template = PromptTemplate(
template=conv_qa_prompt_template,
input_variables=["context", "question"]
)
result = prompt_template.format(context="\n".join(context), question=query)
state.messages[-2][1] = result
prompt = state.get_prompt()
print("new prompt length:" + str(len(prompt)))
state.messages[-2][1] = query
skip_echo_len = len(prompt.replace("</s>", " ")) + 1
@ -435,7 +451,7 @@ def build_single_model_ui():
max_output_tokens = gr.Slider(
minimum=0,
maximum=1024,
value=1024,
value=512,
step=64,
interactive=True,
label="最大输出Token数",
@ -585,7 +601,8 @@ def knowledge_embedding_store(vs_id, files):
shutil.move(file.name, os.path.join(KNOWLEDGE_UPLOAD_ROOT_PATH, vs_id, filename))
knowledge_embedding_client = KnowledgeEmbedding(
file_path=os.path.join(KNOWLEDGE_UPLOAD_ROOT_PATH, vs_id, filename),
model_name=LLM_MODEL_CONFIG["sentence-transforms"],
model_name=LLM_MODEL_CONFIG["text2vec"],
local_persist=False,
vector_store_config={
"vector_store_name": vector_store_name["vs_name"],
"vector_store_path": KNOWLEDGE_UPLOAD_ROOT_PATH})
@ -610,8 +627,7 @@ if __name__ == "__main__":
# 配置初始化
cfg = Config()
dbs = get_database_list()
# dbs = get_database_list()
cfg.set_plugins(scan_plugins(cfg, cfg.debug_mode))
# 加载插件可执行命令

View File

@ -0,0 +1,59 @@
import re
from typing import List
from langchain.text_splitter import CharacterTextSplitter
class CHNDocumentSplitter(CharacterTextSplitter):
def __init__(self, pdf: bool = False, sentence_size: int = None, **kwargs):
super().__init__(**kwargs)
self.pdf = pdf
self.sentence_size = sentence_size
# def split_text_version2(self, text: str) -> List[str]:
# if self.pdf:
# text = re.sub(r"\n{3,}", "\n", text)
# text = re.sub('\s', ' ', text)
# text = text.replace("\n\n", "")
# sent_sep_pattern = re.compile('([﹒﹔﹖﹗.。!?]["’”」』]{0,2}|(?=["‘“「『]{1,2}|$))') # del
# sent_list = []
# for ele in sent_sep_pattern.split(text):
# if sent_sep_pattern.match(ele) and sent_list:
# sent_list[-1] += ele
# elif ele:
# sent_list.append(ele)
# return sent_list
def split_text(self, text: str) -> List[str]:
if self.pdf:
text = re.sub(r"\n{3,}", r"\n", text)
text = re.sub('\s', " ", text)
text = re.sub("\n\n", "", text)
text = re.sub(r'([;.!?。!?\?])([^”’])', r"\1\n\2", text) # 单字符断句符
text = re.sub(r'(\.{6})([^"’”」』])', r"\1\n\2", text) # 英文省略号
text = re.sub(r'(\{2})([^"’”」』])', r"\1\n\2", text) # 中文省略号
text = re.sub(r'([;!?。!?\?]["’”」』]{0,2})([^;!?,。!?\?])', r'\1\n\2', text)
# 如果双引号前有终止符,那么双引号才是句子的终点,把分句符\n放到双引号后注意前面的几句都小心保留了双引号
text = text.rstrip() # 段尾如果有多余的\n就去掉它
# 很多规则中会考虑分号;,但是这里我把它忽略不计,破折号、英文双引号等同样忽略,需要的再做些简单调整即可。
ls = [i for i in text.split("\n") if i]
for ele in ls:
if len(ele) > self.sentence_size:
ele1 = re.sub(r'([,.]["’”」』]{0,2})([^,.])', r'\1\n\2', ele)
ele1_ls = ele1.split("\n")
for ele_ele1 in ele1_ls:
if len(ele_ele1) > self.sentence_size:
ele_ele2 = re.sub(r'([\n]{1,}| {2,}["’”」』]{0,2})([^\s])', r'\1\n\2', ele_ele1)
ele2_ls = ele_ele2.split("\n")
for ele_ele2 in ele2_ls:
if len(ele_ele2) > self.sentence_size:
ele_ele3 = re.sub('( ["’”」』]{0,2})([^ ])', r'\1\n\2', ele_ele2)
ele2_id = ele2_ls.index(ele_ele2)
ele2_ls = ele2_ls[:ele2_id] + [i for i in ele_ele3.split("\n") if i] + ele2_ls[
ele2_id + 1:]
ele_id = ele1_ls.index(ele_ele1)
ele1_ls = ele1_ls[:ele_id] + [i for i in ele2_ls if i] + ele1_ls[ele_id + 1:]
id = ls.index(ele)
ls = ls[:id] + [i for i in ele1_ls if i] + ls[id + 1:]
return ls

View File

@ -1,20 +1,35 @@
import os
from bs4 import BeautifulSoup
from langchain.document_loaders import PyPDFLoader, TextLoader, markdown
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import Chroma
from pilot.configs.model_config import DATASETS_DIR
from pilot.source_embedding.chn_document_splitter import CHNDocumentSplitter
from pilot.source_embedding.csv_embedding import CSVEmbedding
from pilot.source_embedding.markdown_embedding import MarkdownEmbedding
from pilot.source_embedding.pdf_embedding import PDFEmbedding
import markdown
class KnowledgeEmbedding:
def __init__(self, file_path, model_name, vector_store_config):
def __init__(self, file_path, model_name, vector_store_config, local_persist=True):
"""Initialize with Loader url, model_name, vector_store_config"""
self.file_path = file_path
self.model_name = model_name
self.vector_store_config = vector_store_config
self.vector_store_type = "default"
self.knowledge_embedding_client = self.init_knowledge_embedding()
self.embeddings = HuggingFaceEmbeddings(model_name=self.model_name)
self.local_persist = local_persist
if not self.local_persist:
self.knowledge_embedding_client = self.init_knowledge_embedding()
def knowledge_embedding(self):
self.knowledge_embedding_client.source_embedding()
def knowledge_embedding_batch(self):
self.knowledge_embedding_client.batch_embedding()
def init_knowledge_embedding(self):
if self.file_path.endswith(".pdf"):
embedding = PDFEmbedding(file_path=self.file_path, model_name=self.model_name,
@ -31,4 +46,65 @@ class KnowledgeEmbedding:
return embedding
def similar_search(self, text, topk):
return self.knowledge_embedding_client.similar_search(text, topk)
return self.knowledge_embedding_client.similar_search(text, topk)
def knowledge_persist_initialization(self, append_mode):
vector_name = self.vector_store_config["vector_store_name"]
persist_dir = os.path.join(self.vector_store_config["vector_store_path"], vector_name + ".vectordb")
print("vector db path: ", persist_dir)
if os.path.exists(persist_dir):
if append_mode:
print("append knowledge return vector store")
new_documents = self._load_knownlege(self.file_path)
vector_store = Chroma.from_documents(documents=new_documents,
embedding=self.embeddings,
persist_directory=persist_dir)
else:
print("directly return vector store")
vector_store = Chroma(persist_directory=persist_dir, embedding_function=self.embeddings)
else:
print(vector_name + "is new vector store, knowledge begin load...")
documents = self._load_knownlege(self.file_path)
vector_store = Chroma.from_documents(documents=documents,
embedding=self.embeddings,
persist_directory=persist_dir)
vector_store.persist()
return vector_store
def _load_knownlege(self, path):
docments = []
for root, _, files in os.walk(path, topdown=False):
for file in files:
filename = os.path.join(root, file)
docs = self._load_file(filename)
new_docs = []
for doc in docs:
doc.metadata = {"source": doc.metadata["source"].replace(DATASETS_DIR, "")}
print("doc is embedding...", doc.metadata)
new_docs.append(doc)
docments += new_docs
return docments
def _load_file(self, filename):
if filename.lower().endswith(".md"):
loader = TextLoader(filename)
text_splitter = CHNDocumentSplitter(pdf=True, sentence_size=100)
docs = loader.load_and_split(text_splitter)
i = 0
for d in docs:
content = markdown.markdown(d.page_content)
soup = BeautifulSoup(content, 'html.parser')
for tag in soup(['!doctype', 'meta', 'i.fa']):
tag.extract()
docs[i].page_content = soup.get_text()
docs[i].page_content = docs[i].page_content.replace("\n", " ")
i += 1
elif filename.lower().endswith(".pdf"):
loader = PyPDFLoader(filename)
textsplitter = CHNDocumentSplitter(pdf=True, sentence_size=100)
docs = loader.load_and_split(textsplitter)
else:
loader = TextLoader(filename)
text_splitor = CHNDocumentSplitter(sentence_size=100)
docs = loader.load_and_split(text_splitor)
return docs

View File

@ -1,5 +1,6 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import os
from typing import List
from bs4 import BeautifulSoup
@ -8,6 +9,7 @@ from langchain.schema import Document
import markdown
from pilot.source_embedding import SourceEmbedding, register
from pilot.source_embedding.chn_document_splitter import CHNDocumentSplitter
class MarkdownEmbedding(SourceEmbedding):
@ -24,7 +26,28 @@ class MarkdownEmbedding(SourceEmbedding):
def read(self):
"""Load from markdown path."""
loader = TextLoader(self.file_path)
return loader.load()
text_splitter = CHNDocumentSplitter(pdf=True, sentence_size=100)
return loader.load_and_split(text_splitter)
@register
def read_batch(self):
"""Load from markdown path."""
docments = []
for root, _, files in os.walk(self.file_path, topdown=False):
for file in files:
filename = os.path.join(root, file)
loader = TextLoader(filename)
# text_splitor = CHNDocumentSplitter(chunk_size=1000, chunk_overlap=20, length_function=len)
# docs = loader.load_and_split()
docs = loader.load()
# 更新metadata数据
new_docs = []
for doc in docs:
doc.metadata = {"source": doc.metadata["source"].replace(self.file_path, "")}
print("doc is embedding ... ", doc.metadata)
new_docs.append(doc)
docments += new_docs
return docments
@register
def data_process(self, documents: List[Document]):
@ -35,7 +58,7 @@ class MarkdownEmbedding(SourceEmbedding):
for tag in soup(['!doctype', 'meta', 'i.fa']):
tag.extract()
documents[i].page_content = soup.get_text()
documents[i].page_content = documents[i].page_content.replace(" ", "").replace("\n", " ")
documents[i].page_content = documents[i].page_content.replace("\n", " ")
i += 1
return documents

View File

@ -6,6 +6,7 @@ from langchain.document_loaders import PyPDFLoader
from langchain.schema import Document
from pilot.source_embedding import SourceEmbedding, register
from pilot.source_embedding.chn_document_splitter import CHNDocumentSplitter
class PDFEmbedding(SourceEmbedding):
@ -17,20 +18,19 @@ class PDFEmbedding(SourceEmbedding):
self.file_path = file_path
self.model_name = model_name
self.vector_store_config = vector_store_config
# SourceEmbedding(file_path =file_path, );
SourceEmbedding(file_path, model_name, vector_store_config)
@register
def read(self):
"""Load from pdf path."""
loader = PyPDFLoader(self.file_path)
return loader.load()
textsplitter = CHNDocumentSplitter(pdf=True, sentence_size=100)
return loader.load_and_split(textsplitter)
@register
def data_process(self, documents: List[Document]):
i = 0
for d in documents:
documents[i].page_content = d.page_content.replace(" ", "").replace("\n", "")
documents[i].page_content = d.page_content.replace("\n", "")
i += 1
return documents

View File

@ -0,0 +1,53 @@
"""Loader that loads image files."""
from typing import List
from langchain.document_loaders.unstructured import UnstructuredFileLoader
from paddleocr import PaddleOCR
import os
import fitz
class UnstructuredPaddlePDFLoader(UnstructuredFileLoader):
"""Loader that uses unstructured to load image files, such as PNGs and JPGs."""
def _get_elements(self) -> List:
def pdf_ocr_txt(filepath, dir_path="tmp_files"):
full_dir_path = os.path.join(os.path.dirname(filepath), dir_path)
if not os.path.exists(full_dir_path):
os.makedirs(full_dir_path)
filename = os.path.split(filepath)[-1]
ocr = PaddleOCR(lang="ch", use_gpu=False, show_log=False)
doc = fitz.open(filepath)
txt_file_path = os.path.join(full_dir_path, "%s.txt" % (filename))
img_name = os.path.join(full_dir_path, '.tmp.png')
with open(txt_file_path, 'w', encoding='utf-8') as fout:
for i in range(doc.page_count):
page = doc[i]
text = page.get_text("")
fout.write(text)
fout.write("\n")
img_list = page.get_images()
for img in img_list:
pix = fitz.Pixmap(doc, img[0])
pix.save(img_name)
result = ocr.ocr(img_name)
ocr_result = [i[1][0] for line in result for i in line]
fout.write("\n".join(ocr_result))
os.remove(img_name)
return txt_file_path
txt_file_path = pdf_ocr_txt(self.file_path)
from unstructured.partition.text import partition_text
return partition_text(filename=txt_file_path, **self.unstructured_kwargs)
if __name__ == "__main__":
filepath = os.path.join(os.path.dirname(os.path.dirname(__file__)), "content", "samples", "test.pdf")
loader = UnstructuredPaddlePDFLoader(filepath, mode="elements")
docs = loader.load()
for doc in docs:
print(doc)

View File

@ -76,3 +76,15 @@ class SourceEmbedding(ABC):
self.text_to_vector(text)
if 'index_to_store' in registered_methods:
self.index_to_store(text)
def batch_embedding(self):
if 'read_batch' in registered_methods:
text = self.read_batch()
if 'data_process' in registered_methods:
text = self.data_process(text)
if 'text_split' in registered_methods:
self.text_split(text)
if 'text_to_vector' in registered_methods:
self.text_to_vector(text)
if 'index_to_store' in registered_methods:
self.index_to_store(text)

View File

@ -1,4 +1,7 @@
from typing import List
from langchain.text_splitter import CharacterTextSplitter
from pilot.source_embedding import SourceEmbedding, register
from bs4 import BeautifulSoup
@ -20,7 +23,8 @@ class URLEmbedding(SourceEmbedding):
def read(self):
"""Load from url path."""
loader = WebBaseLoader(web_path=self.file_path)
return loader.load()
text_splitor = CharacterTextSplitter(chunk_size=1000, chunk_overlap=20, length_function=len)
return loader.load_and_split(text_splitor)
@register
def data_process(self, documents: List[Document]):

View File

@ -48,12 +48,16 @@ class KnownLedge2Vector:
# vector_store.add_documents(documents=documents)
else:
documents = self.load_knownlege()
<<<<<<< HEAD
# reinit
=======
# reinit
>>>>>>> 31797ecdb53eff76cceb52454888c91c97572851
vector_store = Chroma.from_documents(documents=documents,
embedding=self.embeddings,
persist_directory=persist_dir)
vector_store.persist()
return vector_store
return vector_store
def load_knownlege(self):
docments = []
@ -61,7 +65,11 @@ class KnownLedge2Vector:
for file in files:
filename = os.path.join(root, file)
docs = self._load_file(filename)
<<<<<<< HEAD
# update metadata.
=======
# update metadata.
>>>>>>> 31797ecdb53eff76cceb52454888c91c97572851
new_docs = []
for doc in docs:
doc.metadata = {"source": doc.metadata["source"].replace(DATASETS_DIR, "")}

View File

@ -75,4 +75,5 @@ chromadb
markdown2
colorama
playsound
distro
distro
pypdf