globalization, upgrade

This commit is contained in:
csunny
2023-05-18 16:20:09 +08:00
parent 4302ae9087
commit 8d16a02785
7 changed files with 364 additions and 364 deletions

View File

@@ -99,7 +99,7 @@ def gen_sqlgen_conversation(dbname):
schemas = mo.get_schema(dbname)
for s in schemas:
message += s["schema_info"] + ";"
return f"数据库{dbname}Schema信息如下: {message}\n"
return f"Database {dbname} Schema information as follows: {message}\n"
conv_one_shot = Conversation(
@@ -162,7 +162,7 @@ auto_dbgpt_one_shot = Conversation(
Schema:
数据库gpt-userSchema信息如下: users(city,create_time,email,last_login_time,phone,user_name);
Database gpt-user Schema information as follows: users(city,create_time,email,last_login_time,phone,user_name);
Commands:

View File

@@ -17,7 +17,7 @@ from pilot.logs import logger
def inspect_zip_for_modules(zip_path: str, debug: bool = False) -> list[str]:
"""
加载zip文件的插件完全兼容Auto_gpt_plugin
Loader zip plugin file. Native support Auto_gpt_plugin
Args:
zip_path (str): Path to the zipfile.

View File

@@ -40,8 +40,8 @@ def knownledge_tovec_st(filename):
def load_knownledge_from_doc():
"""从数据集当中加载知识
# TODO 如果向量存储已经存在, 则无需初始化
"""Loader Knownledge from current datasets
# TODO if the vector store is exists, just use it.
"""
if not os.path.exists(DATASETS_DIR):

View File

@@ -40,15 +40,15 @@ class KnownLedge2Vector:
def init_vector_store(self):
persist_dir = os.path.join(VECTORE_PATH, ".vectordb")
print("向量数据库持久化地址: ", persist_dir)
print("Vector store Persist address is: ", persist_dir)
if os.path.exists(persist_dir):
# 从本地持久化文件中Load
print("从本地向量加载数据...")
# Loader from local file.
print("Loader data from local persist vector file...")
vector_store = Chroma(persist_directory=persist_dir, embedding_function=self.embeddings)
# vector_store.add_documents(documents=documents)
else:
documents = self.load_knownlege()
# 重新初始化
# reinit
vector_store = Chroma.from_documents(documents=documents,
embedding=self.embeddings,
persist_directory=persist_dir)
@@ -61,17 +61,17 @@ class KnownLedge2Vector:
for file in files:
filename = os.path.join(root, file)
docs = self._load_file(filename)
# 更新metadata数据
# update metadata.
new_docs = []
for doc in docs:
doc.metadata = {"source": doc.metadata["source"].replace(DATASETS_DIR, "")}
print("文档2向量初始化中, 请稍等...", doc.metadata)
print("Documents to vector running, please wait...", doc.metadata)
new_docs.append(doc)
docments += new_docs
return docments
def _load_file(self, filename):
# 加载文件
# Loader file
if filename.lower().endswith(".pdf"):
loader = UnstructuredFileLoader(filename)
text_splitor = CharacterTextSplitter()