mirror of
https://github.com/csunny/DB-GPT.git
synced 2025-08-30 23:56:25 +00:00
chore: merge main
This commit is contained in:
Binary file not shown.
Before Width: | Height: | Size: 257 KiB After Width: | Height: | Size: 157 KiB |
14
pilot/configs/__init__.py
Normal file
14
pilot/configs/__init__.py
Normal file
@@ -0,0 +1,14 @@
|
||||
import os
|
||||
import random
|
||||
import sys
|
||||
|
||||
from dotenv import load_dotenv
|
||||
|
||||
if "pytest" in sys.argv or "pytest" in sys.modules or os.getenv("CI"):
|
||||
print("Setting random seed to 42")
|
||||
random.seed(42)
|
||||
|
||||
# Load the users .env file into environment variables
|
||||
load_dotenv(verbose=True, override=True)
|
||||
|
||||
del load_dotenv
|
@@ -39,13 +39,6 @@ class Config(metaclass=Singleton):
|
||||
self.use_mac_os_tts = False
|
||||
self.use_mac_os_tts = os.getenv("USE_MAC_OS_TTS")
|
||||
|
||||
# milvus or zilliz cloud configuration
|
||||
self.milvus_addr = os.getenv("MILVUS_ADDR", "localhost:19530")
|
||||
self.milvus_username = os.getenv("MILVUS_USERNAME")
|
||||
self.milvus_password = os.getenv("MILVUS_PASSWORD")
|
||||
self.milvus_collection = os.getenv("MILVUS_COLLECTION", "dbgpt")
|
||||
self.milvus_secure = os.getenv("MILVUS_SECURE") == "True"
|
||||
|
||||
self.authorise_key = os.getenv("AUTHORISE_COMMAND_KEY", "y")
|
||||
self.exit_key = os.getenv("EXIT_KEY", "n")
|
||||
self.image_provider = os.getenv("IMAGE_PROVIDER", True)
|
||||
|
@@ -141,29 +141,21 @@ class MilvusStore(VectorStoreBase):
|
||||
fields.append(
|
||||
FieldSchema(text_field, DataType.VARCHAR, max_length=max_length + 1)
|
||||
)
|
||||
# create the primary key field
|
||||
# primary key field
|
||||
fields.append(
|
||||
FieldSchema(primary_field, DataType.INT64, is_primary=True, auto_id=True)
|
||||
)
|
||||
# create the vector field
|
||||
# vector field
|
||||
fields.append(FieldSchema(vector_field, DataType.FLOAT_VECTOR, dim=dim))
|
||||
# Create the schema for the collection
|
||||
# milvus the schema for the collection
|
||||
schema = CollectionSchema(fields)
|
||||
# Create the collection
|
||||
collection = Collection(collection_name, schema)
|
||||
self.col = collection
|
||||
# Index parameters for the collection
|
||||
# index parameters for the collection
|
||||
index = self.index_params
|
||||
# Create the index
|
||||
# milvus index
|
||||
collection.create_index(vector_field, index)
|
||||
# Create the VectorStore
|
||||
# milvus = cls(
|
||||
# embedding,
|
||||
# kwargs.get("connection_args", {"port": 19530}),
|
||||
# collection_name,
|
||||
# text_field,
|
||||
# )
|
||||
# Add the texts.
|
||||
schema = collection.schema
|
||||
for x in schema.fields:
|
||||
self.fields.append(x.name)
|
||||
|
@@ -69,6 +69,7 @@ colorama
|
||||
playsound
|
||||
distro
|
||||
pypdf
|
||||
milvus-cli==0.3.2
|
||||
|
||||
# Testing dependencies
|
||||
pytest
|
||||
|
@@ -1,16 +1,21 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
import argparse
|
||||
import os
|
||||
import sys
|
||||
|
||||
sys.path.append(os.path.dirname(os.path.dirname(os.path.realpath(__file__))))
|
||||
|
||||
from pilot.configs.config import Config
|
||||
from pilot.configs.model_config import (
|
||||
DATASETS_DIR,
|
||||
LLM_MODEL_CONFIG,
|
||||
VECTOR_SEARCH_TOP_K,
|
||||
VECTOR_STORE_CONFIG,
|
||||
VECTOR_STORE_TYPE,
|
||||
)
|
||||
from pilot.source_embedding.knowledge_embedding import KnowledgeEmbedding
|
||||
|
||||
CFG = Config()
|
||||
|
||||
|
||||
class LocalKnowledgeInit:
|
||||
embeddings: object = None
|
||||
@@ -47,12 +52,8 @@ if __name__ == "__main__":
|
||||
args = parser.parse_args()
|
||||
vector_name = args.vector_name
|
||||
append_mode = args.append
|
||||
store_type = VECTOR_STORE_TYPE
|
||||
vector_store_config = {
|
||||
"url": VECTOR_STORE_CONFIG["url"],
|
||||
"port": VECTOR_STORE_CONFIG["port"],
|
||||
"vector_store_name": vector_name,
|
||||
}
|
||||
store_type = CFG.VECTOR_STORE_TYPE
|
||||
vector_store_config = {"vector_store_name": vector_name}
|
||||
print(vector_store_config)
|
||||
kv = LocalKnowledgeInit(vector_store_config=vector_store_config)
|
||||
vector_store = kv.knowledge_persist(file_path=DATASETS_DIR, append_mode=append_mode)
|
||||
|
Reference in New Issue
Block a user