mirror of
https://github.com/csunny/DB-GPT.git
synced 2025-07-30 15:21:02 +00:00
update:merge main branch
This commit is contained in:
commit
b70cb8076d
38
.github/ISSUE_TEMPLATE/bug_report.md
vendored
Normal file
38
.github/ISSUE_TEMPLATE/bug_report.md
vendored
Normal file
@ -0,0 +1,38 @@
|
||||
---
|
||||
name: Bug report
|
||||
about: Create a report to help us improve
|
||||
title: "[BUG]: "
|
||||
labels: ''
|
||||
assignees: ''
|
||||
|
||||
---
|
||||
|
||||
**Describe the bug**
|
||||
A clear and concise description of what the bug is.
|
||||
|
||||
**To Reproduce**
|
||||
Steps to reproduce the behavior:
|
||||
1. Go to '...'
|
||||
2. Click on '....'
|
||||
3. Scroll down to '....'
|
||||
4. See error
|
||||
|
||||
**Expected behavior**
|
||||
A clear and concise description of what you expected to happen.
|
||||
|
||||
**Screenshots**
|
||||
If applicable, add screenshots to help explain your problem.
|
||||
|
||||
**Desktop (please complete the following information):**
|
||||
- OS: [e.g. iOS]
|
||||
- Browser [e.g. chrome, safari]
|
||||
- Version [e.g. 22]
|
||||
|
||||
**Smartphone (please complete the following information):**
|
||||
- Device: [e.g. iPhone6]
|
||||
- OS: [e.g. iOS8.1]
|
||||
- Browser [e.g. stock browser, safari]
|
||||
- Version [e.g. 22]
|
||||
|
||||
**Additional context**
|
||||
Add any other context about the problem here.
|
10
.github/ISSUE_TEMPLATE/documentation-related.md
vendored
Normal file
10
.github/ISSUE_TEMPLATE/documentation-related.md
vendored
Normal file
@ -0,0 +1,10 @@
|
||||
---
|
||||
name: Documentation Related
|
||||
about: Describe this issue template's purpose here.
|
||||
title: "[Doc]: "
|
||||
labels: ''
|
||||
assignees: ''
|
||||
|
||||
---
|
||||
|
||||
|
20
.github/ISSUE_TEMPLATE/feature_request.md
vendored
Normal file
20
.github/ISSUE_TEMPLATE/feature_request.md
vendored
Normal file
@ -0,0 +1,20 @@
|
||||
---
|
||||
name: Feature request
|
||||
about: Suggest an idea for this project
|
||||
title: "[Feature]:"
|
||||
labels: ''
|
||||
assignees: ''
|
||||
|
||||
---
|
||||
|
||||
**Is your feature request related to a problem? Please describe.**
|
||||
A clear and concise description of what the problem is. Ex. I'm always frustrated when [...]
|
||||
|
||||
**Describe the solution you'd like**
|
||||
A clear and concise description of what you want to happen.
|
||||
|
||||
**Describe alternatives you've considered**
|
||||
A clear and concise description of any alternative solutions or features you've considered.
|
||||
|
||||
**Additional context**
|
||||
Add any other context or screenshots about the feature request here.
|
1
.gitignore
vendored
1
.gitignore
vendored
@ -23,6 +23,7 @@ lib/
|
||||
lib64/
|
||||
parts/
|
||||
sdist/
|
||||
models
|
||||
var/
|
||||
wheels/
|
||||
models/
|
||||
|
10
README.md
10
README.md
@ -29,6 +29,10 @@ Currently, we have released multiple key features, which are listed below to dem
|
||||
- Unified vector storage/indexing of knowledge base
|
||||
- Support for unstructured data such as PDF, Markdown, CSV, and WebURL
|
||||
|
||||
- Milti LLMs Support
|
||||
- Supports multiple large language models, currently supporting Vicuna (7b, 13b), ChatGLM-6b (int4, int8)
|
||||
- TODO: codegen2, codet5p
|
||||
|
||||
|
||||
## Demo
|
||||
|
||||
@ -177,6 +181,10 @@ Notice: the webserver need to connect llmserver, so you need change the .env f
|
||||
We provide a user interface for Gradio, which allows you to use DB-GPT through our user interface. Additionally, we have prepared several reference articles (written in Chinese) that introduce the code and principles related to our project.
|
||||
- [LLM Practical In Action Series (1) — Combined Langchain-Vicuna Application Practical](https://medium.com/@cfqcsunny/llm-practical-in-action-series-1-combined-langchain-vicuna-application-practical-701cd0413c9f)
|
||||
|
||||
### Multi LLMs Usage
|
||||
|
||||
To use multiple models, modify the LLM_MODEL parameter in the .env configuration file to switch between the models.
|
||||
|
||||
####Create your own knowledge repository:
|
||||
|
||||
1.Place personal knowledge files or folders in the pilot/datasets directory.
|
||||
@ -215,7 +223,7 @@ The achievements of this project are thanks to the technical community, especial
|
||||
| :---: | :---: | :---: | :---: |:---: |
|
||||
|
||||
|
||||
This project follows the git-contributor [spec](https://github.com/xudafeng/git-contributor), auto updated at `Sun May 14 2023 23:02:43 GMT+0800`.
|
||||
This project follows the git-contributor [spec](https://github.com/xudafeng/git-contributor), auto updated at `Fri May 19 2023 00:24:18 GMT+0800`.
|
||||
|
||||
<!-- GITCONTRIBUTOR_END -->
|
||||
|
||||
|
10
README.zh.md
10
README.zh.md
@ -26,6 +26,10 @@ DB-GPT 是一个开源的以数据库为基础的GPT实验项目,使用本地
|
||||
- 知识库统一向量存储/索引
|
||||
- 非结构化数据支持包括PDF、MarkDown、CSV、WebURL
|
||||
|
||||
- 多模型支持
|
||||
- 支持多种大语言模型, 当前已支持Vicuna(7b,13b), ChatGLM-6b(int4, int8)
|
||||
- TODO: codet5p, codegen2
|
||||
|
||||
## 效果演示
|
||||
|
||||
示例通过 RTX 4090 GPU 演示,[YouTube 地址](https://www.youtube.com/watch?v=1PWI6F89LPo)
|
||||
@ -180,6 +184,10 @@ $ python webserver.py
|
||||
2. [大模型实战系列(2) —— DB-GPT 阿里云部署指南](https://zhuanlan.zhihu.com/p/629467580)
|
||||
3. [大模型实战系列(3) —— DB-GPT插件模型原理与使用](https://zhuanlan.zhihu.com/p/629623125)
|
||||
|
||||
|
||||
### 多模型使用
|
||||
在.env 配置文件当中, 修改LLM_MODEL参数来切换使用的模型。
|
||||
|
||||
####打造属于你的知识库:
|
||||
|
||||
1、将个人知识文件或者文件夹放入pilot/datasets目录中
|
||||
@ -212,12 +220,14 @@ python tools/knowledge_init.py
|
||||
|
||||
<!-- GITCONTRIBUTOR_START -->
|
||||
|
||||
## 贡献者
|
||||
## Contributors
|
||||
|
||||
|[<img src="https://avatars.githubusercontent.com/u/17919400?v=4" width="100px;"/><br/><sub><b>csunny</b></sub>](https://github.com/csunny)<br/>|[<img src="https://avatars.githubusercontent.com/u/1011681?v=4" width="100px;"/><br/><sub><b>xudafeng</b></sub>](https://github.com/xudafeng)<br/>|[<img src="https://avatars.githubusercontent.com/u/7636723?s=96&v=4" width="100px;"/><br/><sub><b>明天</b></sub>](https://github.com/yhjun1026)<br/> | [<img src="https://avatars.githubusercontent.com/u/13723926?v=4" width="100px;"/><br/><sub><b>Aries-ckt</b></sub>](https://github.com/Aries-ckt)<br/>|[<img src="https://avatars.githubusercontent.com/u/95130644?v=4" width="100px;"/><br/><sub><b>thebigbone</b></sub>](https://github.com/thebigbone)<br/>|
|
||||
| :---: | :---: | :---: | :---: |:---: |
|
||||
|
||||
|
||||
[git-contributor 说明](https://github.com/xudafeng/git-contributor),自动生成时间:`Fri May 19 2023 00:24:18 GMT+0800`。
|
||||
This project follows the git-contributor [spec](https://github.com/xudafeng/git-contributor), auto updated at `Sun May 14 2023 23:02:43 GMT+0800`.
|
||||
|
||||
<!-- GITCONTRIBUTOR_END -->
|
||||
|
@ -5,14 +5,21 @@ import requests
|
||||
import json
|
||||
import time
|
||||
import uuid
|
||||
import os
|
||||
import sys
|
||||
from urllib.parse import urljoin
|
||||
import gradio as gr
|
||||
|
||||
ROOT_PATH = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
||||
sys.path.append(ROOT_PATH)
|
||||
|
||||
|
||||
from pilot.configs.config import Config
|
||||
from pilot.conversation import conv_qa_prompt_template, conv_templates
|
||||
from langchain.prompts import PromptTemplate
|
||||
|
||||
|
||||
vicuna_stream_path = "generate_stream"
|
||||
llmstream_stream_path = "generate_stream"
|
||||
|
||||
CFG = Config()
|
||||
|
||||
@ -21,38 +28,45 @@ def generate(query):
|
||||
template_name = "conv_one_shot"
|
||||
state = conv_templates[template_name].copy()
|
||||
|
||||
pt = PromptTemplate(
|
||||
template=conv_qa_prompt_template,
|
||||
input_variables=["context", "question"]
|
||||
)
|
||||
# pt = PromptTemplate(
|
||||
# template=conv_qa_prompt_template,
|
||||
# input_variables=["context", "question"]
|
||||
# )
|
||||
|
||||
result = pt.format(context="This page covers how to use the Chroma ecosystem within LangChain. It is broken into two parts: installation and setup, and then references to specific Chroma wrappers.",
|
||||
question=query)
|
||||
# result = pt.format(context="This page covers how to use the Chroma ecosystem within LangChain. It is broken into two parts: installation and setup, and then references to specific Chroma wrappers.",
|
||||
# question=query)
|
||||
|
||||
print(result)
|
||||
# print(result)
|
||||
|
||||
state.append_message(state.roles[0], result)
|
||||
state.append_message(state.roles[0], query)
|
||||
state.append_message(state.roles[1], None)
|
||||
|
||||
prompt = state.get_prompt()
|
||||
params = {
|
||||
"model": "vicuna-13b",
|
||||
"model": "chatglm-6b",
|
||||
"prompt": prompt,
|
||||
"temperature": 0.7,
|
||||
"temperature": 1.0,
|
||||
"max_new_tokens": 1024,
|
||||
"stop": "###"
|
||||
}
|
||||
|
||||
response = requests.post(
|
||||
url=urljoin(CFG.MODEL_SERVER, vicuna_stream_path), data=json.dumps(params)
|
||||
url=urljoin(CFG.MODEL_SERVER, llmstream_stream_path), data=json.dumps(params)
|
||||
)
|
||||
|
||||
skip_echo_len = len(params["prompt"]) + 1 - params["prompt"].count("</s>") * 3
|
||||
|
||||
for chunk in response.iter_lines(decode_unicode=False, delimiter=b"\0"):
|
||||
|
||||
if chunk:
|
||||
data = json.loads(chunk.decode())
|
||||
if data["error_code"] == 0:
|
||||
output = data["text"][skip_echo_len:].strip()
|
||||
|
||||
if "vicuna" in CFG.LLM_MODEL:
|
||||
output = data["text"][skip_echo_len:].strip()
|
||||
else:
|
||||
output = data["text"].strip()
|
||||
|
||||
state.messages[-1][-1] = output + "▌"
|
||||
yield(output)
|
||||
|
||||
|
@ -105,7 +105,8 @@ class Config(metaclass=Singleton):
|
||||
self.LLM_MODEL = os.getenv("LLM_MODEL", "vicuna-13b")
|
||||
self.LIMIT_MODEL_CONCURRENCY = int(os.getenv("LIMIT_MODEL_CONCURRENCY", 5))
|
||||
self.MAX_POSITION_EMBEDDINGS = int(os.getenv("MAX_POSITION_EMBEDDINGS", 4096))
|
||||
self.MODEL_SERVER = os.getenv("MODEL_SERVER", "http://121.41.167.183:8000")
|
||||
self.MODEL_PORT = os.getenv("MODEL_PORT", 8000)
|
||||
self.MODEL_SERVER = os.getenv("MODEL_SERVER", "http://127.0.0.1" + ":" + str(self.MODEL_PORT))
|
||||
self.ISLOAD_8BIT = os.getenv("ISLOAD_8BIT", "True") == "True"
|
||||
|
||||
def set_debug_mode(self, value: bool) -> None:
|
||||
|
@ -16,11 +16,17 @@ DATA_DIR = os.path.join(PILOT_PATH, "data")
|
||||
|
||||
nltk.data.path = [os.path.join(PILOT_PATH, "nltk_data")] + nltk.data.path
|
||||
|
||||
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
DEVICE = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
||||
LLM_MODEL_CONFIG = {
|
||||
"flan-t5-base": os.path.join(MODEL_PATH, "flan-t5-base"),
|
||||
"vicuna-13b": os.path.join(MODEL_PATH, "vicuna-13b"),
|
||||
"vicuna-7b": os.path.join(MODEL_PATH, "vicuna-7b"),
|
||||
"text2vec": os.path.join(MODEL_PATH, "text2vec-large-chinese"),
|
||||
"sentence-transforms": os.path.join(MODEL_PATH, "all-MiniLM-L6-v2"),
|
||||
"codegen2-1b": os.path.join(MODEL_PATH, "codegen2-1B"),
|
||||
"codet5p-2b": os.path.join(MODEL_PATH, "codet5p-2b"),
|
||||
"chatglm-6b-int4": os.path.join(MODEL_PATH, "chatglm-6b-int4"),
|
||||
"chatglm-6b": os.path.join(MODEL_PATH, "chatglm-6b"),
|
||||
"text2vec-base": os.path.join(MODEL_PATH, "text2vec-base-chinese"),
|
||||
"sentence-transforms": os.path.join(MODEL_PATH, "all-MiniLM-L6-v2")
|
||||
}
|
||||
@ -29,7 +35,7 @@ LLM_MODEL_CONFIG = {
|
||||
VECTOR_SEARCH_TOP_K = 20
|
||||
LLM_MODEL = "vicuna-13b"
|
||||
LIMIT_MODEL_CONCURRENCY = 5
|
||||
MAX_POSITION_EMBEDDINGS = 4096
|
||||
MAX_POSITION_EMBEDDINGS = 4096
|
||||
# VICUNA_MODEL_SERVER = "http://121.41.227.141:8000"
|
||||
VICUNA_MODEL_SERVER = "http://120.79.27.110:8000"
|
||||
|
||||
@ -38,15 +44,9 @@ ISLOAD_8BIT = True
|
||||
ISDEBUG = False
|
||||
|
||||
|
||||
DB_SETTINGS = {
|
||||
"user": "root",
|
||||
"password": "aa123456",
|
||||
"host": "127.0.0.1",
|
||||
"port": 3306
|
||||
}
|
||||
|
||||
VECTOR_SEARCH_TOP_K = 10
|
||||
VS_ROOT_PATH = os.path.join(os.path.dirname(os.path.dirname(__file__)), "vs_store")
|
||||
KNOWLEDGE_UPLOAD_ROOT_PATH = os.path.join(os.path.dirname(os.path.dirname(__file__)), "data")
|
||||
KNOWLEDGE_CHUNK_SPLIT_SIZE = 100
|
||||
VECTOR_STORE_TYPE = "Chroma"
|
||||
VECTOR_STORE_TYPE = "milvus"
|
||||
VECTOR_STORE_CONFIG = {"url": "127.0.0.1", "port": "19530"}
|
||||
|
@ -15,6 +15,9 @@ DB_SETTINGS = {
|
||||
"port": CFG.LOCAL_DB_PORT
|
||||
}
|
||||
|
||||
ROLE_USER = "USER"
|
||||
ROLE_ASSISTANT = "Assistant"
|
||||
|
||||
class SeparatorStyle(Enum):
|
||||
SINGLE = auto()
|
||||
TWO = auto()
|
||||
|
115
pilot/model/adapter.py
Normal file
115
pilot/model/adapter.py
Normal file
@ -0,0 +1,115 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
from typing import List
|
||||
from functools import cache
|
||||
|
||||
from transformers import (
|
||||
AutoTokenizer,
|
||||
AutoModelForCausalLM,
|
||||
AutoModel
|
||||
)
|
||||
|
||||
from pilot.configs.model_config import DEVICE
|
||||
|
||||
class BaseLLMAdaper:
|
||||
"""The Base class for multi model, in our project.
|
||||
We will support those model, which performance resemble ChatGPT """
|
||||
|
||||
def match(self, model_path: str):
|
||||
return True
|
||||
|
||||
def loader(self, model_path: str, from_pretrained_kwargs: dict):
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
model_path, low_cpu_mem_usage=True, **from_pretrained_kwargs
|
||||
)
|
||||
return model, tokenizer
|
||||
|
||||
|
||||
llm_model_adapters: List[BaseLLMAdaper] = []
|
||||
|
||||
# Register llm models to adapters, by this we can use multi models.
|
||||
def register_llm_model_adapters(cls):
|
||||
"""Register a llm model adapter."""
|
||||
llm_model_adapters.append(cls())
|
||||
|
||||
|
||||
@cache
|
||||
def get_llm_model_adapter(model_path: str) -> BaseLLMAdaper:
|
||||
for adapter in llm_model_adapters:
|
||||
if adapter.match(model_path):
|
||||
return adapter
|
||||
|
||||
raise ValueError(f"Invalid model adapter for {model_path}")
|
||||
|
||||
|
||||
# TODO support cpu? for practise we support gpt4all or chatglm-6b-int4?
|
||||
|
||||
class VicunaLLMAdapater(BaseLLMAdaper):
|
||||
"""Vicuna Adapter """
|
||||
def match(self, model_path: str):
|
||||
return "vicuna" in model_path
|
||||
|
||||
def loader(self, model_path: str, from_pretrained_kwagrs: dict):
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
model_path,
|
||||
low_cpu_mem_usage=True,
|
||||
**from_pretrained_kwagrs
|
||||
)
|
||||
return model, tokenizer
|
||||
|
||||
class ChatGLMAdapater(BaseLLMAdaper):
|
||||
"""LLM Adatpter for THUDM/chatglm-6b"""
|
||||
def match(self, model_path: str):
|
||||
return "chatglm" in model_path
|
||||
|
||||
def loader(self, model_path: str, from_pretrained_kwargs: dict):
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
|
||||
if DEVICE != "cuda":
|
||||
model = AutoModel.from_pretrained(
|
||||
model_path, trust_remote_code=True, **from_pretrained_kwargs
|
||||
).float()
|
||||
return model, tokenizer
|
||||
else:
|
||||
model = AutoModel.from_pretrained(
|
||||
model_path, trust_remote_code=True, **from_pretrained_kwargs
|
||||
).half().cuda()
|
||||
return model, tokenizer
|
||||
|
||||
class CodeGenAdapter(BaseLLMAdaper):
|
||||
pass
|
||||
|
||||
class StarCoderAdapter(BaseLLMAdaper):
|
||||
pass
|
||||
|
||||
class T5CodeAdapter(BaseLLMAdaper):
|
||||
pass
|
||||
|
||||
class KoalaLLMAdapter(BaseLLMAdaper):
|
||||
"""Koala LLM Adapter which Based LLaMA """
|
||||
def match(self, model_path: str):
|
||||
return "koala" in model_path
|
||||
|
||||
|
||||
class RWKV4LLMAdapter(BaseLLMAdaper):
|
||||
"""LLM Adapter for RwKv4 """
|
||||
def match(self, model_path: str):
|
||||
return "RWKV-4" in model_path
|
||||
|
||||
def loader(self, model_path: str, from_pretrained_kwargs: dict):
|
||||
# TODO
|
||||
pass
|
||||
|
||||
class GPT4AllAdapter(BaseLLMAdaper):
|
||||
"""A light version for someone who want practise LLM use laptop."""
|
||||
def match(self, model_path: str):
|
||||
return "gpt4all" in model_path
|
||||
|
||||
|
||||
register_llm_model_adapters(VicunaLLMAdapater)
|
||||
register_llm_model_adapters(ChatGLMAdapater)
|
||||
# TODO Default support vicuna, other model need to tests and Evaluate
|
||||
|
||||
register_llm_model_adapters(BaseLLMAdaper)
|
@ -1,3 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding:utf-8 -*-
|
||||
|
49
pilot/model/chatglm_llm.py
Normal file
49
pilot/model/chatglm_llm.py
Normal file
@ -0,0 +1,49 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding:utf-8 -*-
|
||||
|
||||
import torch
|
||||
|
||||
from pilot.conversation import ROLE_USER, ROLE_ASSISTANT
|
||||
|
||||
@torch.inference_mode()
|
||||
def chatglm_generate_stream(model, tokenizer, params, device, context_len=2048, stream_interval=2):
|
||||
|
||||
"""Generate text using chatglm model's chat api """
|
||||
prompt = params["prompt"]
|
||||
temperature = float(params.get("temperature", 1.0))
|
||||
top_p = float(params.get("top_p", 1.0))
|
||||
stop = params.get("stop", "###")
|
||||
echo = params.get("echo", False)
|
||||
|
||||
generate_kwargs = {
|
||||
"do_sample": True if temperature > 1e-5 else False,
|
||||
"top_p": top_p,
|
||||
"repetition_penalty": 1.0,
|
||||
"logits_processor": None
|
||||
}
|
||||
|
||||
if temperature > 1e-5:
|
||||
generate_kwargs["temperature"] = temperature
|
||||
|
||||
# TODO, Fix this
|
||||
hist = []
|
||||
|
||||
messages = prompt.split(stop)
|
||||
|
||||
# Add history chat to hist for model.
|
||||
for i in range(1, len(messages) - 2, 2):
|
||||
hist.append((messages[i].split(ROLE_USER + ":")[1], messages[i+1].split(ROLE_ASSISTANT + ":")[1]))
|
||||
|
||||
query = messages[-2].split(ROLE_USER + ":")[1]
|
||||
print("Query Message: ", query)
|
||||
output = ""
|
||||
i = 0
|
||||
for i, (response, new_hist) in enumerate(model.stream_chat(tokenizer, query, hist, **generate_kwargs)):
|
||||
if echo:
|
||||
output = query + " " + response
|
||||
else:
|
||||
output = response
|
||||
|
||||
yield output
|
||||
|
||||
yield output
|
125
pilot/model/llm/monkey_patch.py
Normal file
125
pilot/model/llm/monkey_patch.py
Normal file
@ -0,0 +1,125 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding:utf-8 -*-
|
||||
|
||||
import math
|
||||
from typing import Optional, Tuple
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
import transformers
|
||||
|
||||
|
||||
def rotate_half(x):
|
||||
"""Rotates half the hidden dims of the input."""
|
||||
x1 = x[..., : x.shape[-1] // 2].clone()
|
||||
x2 = x[..., x.shape[-1] // 2 :].clone()
|
||||
return torch.cat((-x2, x1), dim=-1)
|
||||
|
||||
|
||||
def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
|
||||
gather_indices = position_ids[:, None, :, None] # [bs, 1, seq_len, 1]
|
||||
gather_indices = gather_indices.repeat(1, cos.shape[1], 1, cos.shape[3])
|
||||
cos = torch.gather(cos.repeat(gather_indices.shape[0], 1, 1, 1), 2, gather_indices)
|
||||
sin = torch.gather(sin.repeat(gather_indices.shape[0], 1, 1, 1), 2, gather_indices)
|
||||
q_embed = (q * cos) + (rotate_half(q) * sin)
|
||||
k_embed = (k * cos) + (rotate_half(k) * sin)
|
||||
return q_embed, k_embed
|
||||
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
||||
output_attentions: bool = False,
|
||||
use_cache: bool = False,
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||||
bsz, q_len, _ = hidden_states.size()
|
||||
|
||||
query_states = (
|
||||
self.q_proj(hidden_states)
|
||||
.view(bsz, q_len, self.num_heads, self.head_dim)
|
||||
.transpose(1, 2)
|
||||
)
|
||||
key_states = (
|
||||
self.k_proj(hidden_states)
|
||||
.view(bsz, q_len, self.num_heads, self.head_dim)
|
||||
.transpose(1, 2)
|
||||
)
|
||||
value_states = (
|
||||
self.v_proj(hidden_states)
|
||||
.view(bsz, q_len, self.num_heads, self.head_dim)
|
||||
.transpose(1, 2)
|
||||
)
|
||||
|
||||
kv_seq_len = key_states.shape[-2]
|
||||
if past_key_value is not None:
|
||||
kv_seq_len += past_key_value[0].shape[-2]
|
||||
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
||||
query_states, key_states = apply_rotary_pos_emb(
|
||||
query_states, key_states, cos, sin, position_ids
|
||||
)
|
||||
# [bsz, nh, t, hd]
|
||||
|
||||
if past_key_value is not None:
|
||||
# reuse k, v, self_attention
|
||||
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
||||
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
||||
|
||||
past_key_value = (key_states, value_states) if use_cache else None
|
||||
|
||||
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(
|
||||
self.head_dim
|
||||
)
|
||||
|
||||
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
||||
raise ValueError(
|
||||
f"Attention weights should be of size {(bsz * self.num_heads, q_len, kv_seq_len)}, but is"
|
||||
f" {attn_weights.size()}"
|
||||
)
|
||||
|
||||
if attention_mask is not None:
|
||||
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
||||
raise ValueError(
|
||||
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
||||
)
|
||||
attn_weights = attn_weights + attention_mask
|
||||
attn_weights = torch.max(
|
||||
attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min)
|
||||
)
|
||||
|
||||
# upcast attention to fp32
|
||||
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(
|
||||
query_states.dtype
|
||||
)
|
||||
attn_output = torch.matmul(attn_weights, value_states)
|
||||
|
||||
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
||||
raise ValueError(
|
||||
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
||||
f" {attn_output.size()}"
|
||||
)
|
||||
|
||||
attn_output = attn_output.transpose(1, 2)
|
||||
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
||||
|
||||
attn_output = self.o_proj(attn_output)
|
||||
|
||||
if not output_attentions:
|
||||
attn_weights = None
|
||||
|
||||
return attn_output, attn_weights, past_key_value
|
||||
|
||||
|
||||
def replace_llama_attn_with_non_inplace_operations():
|
||||
"""Avoid bugs in mps backend by not using in-place operations."""
|
||||
transformers.models.llama.modeling_llama.LlamaAttention.forward = forward
|
||||
|
||||
import transformers
|
||||
|
||||
|
||||
|
||||
def replace_llama_attn_with_non_inplace_operations():
|
||||
"""Avoid bugs in mps backend by not using in-place operations."""
|
||||
transformers.models.llama.modeling_llama.LlamaAttention.forward = forward
|
@ -2,11 +2,39 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
import torch
|
||||
import sys
|
||||
import warnings
|
||||
from pilot.singleton import Singleton
|
||||
|
||||
from typing import Optional
|
||||
from pilot.model.compression import compress_module
|
||||
from pilot.model.adapter import get_llm_model_adapter
|
||||
from pilot.utils import get_gpu_memory
|
||||
from pilot.model.llm.monkey_patch import replace_llama_attn_with_non_inplace_operations
|
||||
|
||||
def raise_warning_for_incompatible_cpu_offloading_configuration(
|
||||
device: str, load_8bit: bool, cpu_offloading: bool
|
||||
):
|
||||
if cpu_offloading:
|
||||
if not load_8bit:
|
||||
warnings.warn(
|
||||
"The cpu-offloading feature can only be used while also using 8-bit-quantization.\n"
|
||||
"Use '--load-8bit' to enable 8-bit-quantization\n"
|
||||
"Continuing without cpu-offloading enabled\n"
|
||||
)
|
||||
return False
|
||||
if not "linux" in sys.platform:
|
||||
warnings.warn(
|
||||
"CPU-offloading is only supported on linux-systems due to the limited compatability with the bitsandbytes-package\n"
|
||||
"Continuing without cpu-offloading enabled\n"
|
||||
)
|
||||
return False
|
||||
if device != "cuda":
|
||||
warnings.warn(
|
||||
"CPU-offloading is only enabled when using CUDA-devices\n"
|
||||
"Continuing without cpu-offloading enabled\n"
|
||||
)
|
||||
return False
|
||||
return cpu_offloading
|
||||
|
||||
|
||||
class ModelLoader(metaclass=Singleton):
|
||||
@ -30,26 +58,37 @@ class ModelLoader(metaclass=Singleton):
|
||||
}
|
||||
|
||||
# TODO multi gpu support
|
||||
def loader(self, num_gpus, load_8bit=False, debug=False):
|
||||
def loader(self, num_gpus, load_8bit=False, debug=False, cpu_offloading=False, max_gpu_memory: Optional[str]=None):
|
||||
|
||||
if self.device == "cpu":
|
||||
kwargs = {}
|
||||
kwargs = {"torch_dtype": torch.float32}
|
||||
|
||||
elif self.device == "cuda":
|
||||
kwargs = {"torch_dtype": torch.float16}
|
||||
if num_gpus == "auto":
|
||||
num_gpus = int(num_gpus)
|
||||
|
||||
if num_gpus != 1:
|
||||
kwargs["device_map"] = "auto"
|
||||
if max_gpu_memory is None:
|
||||
kwargs["device_map"] = "sequential"
|
||||
|
||||
available_gpu_memory = get_gpu_memory(num_gpus)
|
||||
kwargs["max_memory"] = {
|
||||
i: str(int(available_gpu_memory[i] * 0.85)) + "GiB"
|
||||
for i in range(num_gpus)
|
||||
}
|
||||
|
||||
else:
|
||||
num_gpus = int(num_gpus)
|
||||
if num_gpus != 1:
|
||||
kwargs.update({
|
||||
"device_map": "auto",
|
||||
"max_memory": {i: "13GiB" for i in range(num_gpus)},
|
||||
})
|
||||
kwargs["max_memory"] = {i: max_gpu_memory for i in range(num_gpus)}
|
||||
|
||||
elif self.device == "mps":
|
||||
kwargs = kwargs = {"torch_dtype": torch.float16}
|
||||
replace_llama_attn_with_non_inplace_operations()
|
||||
else:
|
||||
# Todo Support mps for practise
|
||||
raise ValueError(f"Invalid device: {self.device}")
|
||||
|
||||
|
||||
# TODO when cpu loading, need use quantization config
|
||||
|
||||
llm_adapter = get_llm_model_adapter(self.model_path)
|
||||
model, tokenizer = llm_adapter.loader(self.model_path, kwargs)
|
||||
|
||||
@ -61,7 +100,7 @@ class ModelLoader(metaclass=Singleton):
|
||||
else:
|
||||
compress_module(model, self.device)
|
||||
|
||||
if (self.device == "cuda" and num_gpus == 1):
|
||||
if (self.device == "cuda" and num_gpus == 1 and not cpu_offloading) or self.device == "mps":
|
||||
model.to(self.device)
|
||||
|
||||
if debug:
|
||||
|
82
pilot/server/chat_adapter.py
Normal file
82
pilot/server/chat_adapter.py
Normal file
@ -0,0 +1,82 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
from typing import List
|
||||
from functools import cache
|
||||
from pilot.model.inference import generate_stream
|
||||
|
||||
class BaseChatAdpter:
|
||||
"""The Base class for chat with llm models. it will match the model,
|
||||
and fetch output from model"""
|
||||
|
||||
def match(self, model_path: str):
|
||||
return True
|
||||
|
||||
def get_generate_stream_func(self):
|
||||
"""Return the generate stream handler func"""
|
||||
pass
|
||||
|
||||
|
||||
llm_model_chat_adapters: List[BaseChatAdpter] = []
|
||||
|
||||
|
||||
def register_llm_model_chat_adapter(cls):
|
||||
"""Register a chat adapter"""
|
||||
llm_model_chat_adapters.append(cls())
|
||||
|
||||
|
||||
@cache
|
||||
def get_llm_chat_adapter(model_path: str) -> BaseChatAdpter:
|
||||
"""Get a chat generate func for a model"""
|
||||
for adapter in llm_model_chat_adapters:
|
||||
if adapter.match(model_path):
|
||||
return adapter
|
||||
|
||||
raise ValueError(f"Invalid model for chat adapter {model_path}")
|
||||
|
||||
|
||||
class VicunaChatAdapter(BaseChatAdpter):
|
||||
|
||||
""" Model chat Adapter for vicuna"""
|
||||
def match(self, model_path: str):
|
||||
return "vicuna" in model_path
|
||||
|
||||
def get_generate_stream_func(self):
|
||||
return generate_stream
|
||||
|
||||
|
||||
class ChatGLMChatAdapter(BaseChatAdpter):
|
||||
""" Model chat Adapter for ChatGLM"""
|
||||
def match(self, model_path: str):
|
||||
return "chatglm" in model_path
|
||||
|
||||
def get_generate_stream_func(self):
|
||||
from pilot.model.chatglm_llm import chatglm_generate_stream
|
||||
return chatglm_generate_stream
|
||||
|
||||
|
||||
class CodeT5ChatAdapter(BaseChatAdpter):
|
||||
|
||||
""" Model chat adapter for CodeT5 """
|
||||
def match(self, model_path: str):
|
||||
return "codet5" in model_path
|
||||
|
||||
def get_generate_stream_func(self):
|
||||
# TODO
|
||||
pass
|
||||
|
||||
class CodeGenChatAdapter(BaseChatAdpter):
|
||||
|
||||
""" Model chat adapter for CodeGen """
|
||||
def match(self, model_path: str):
|
||||
return "codegen" in model_path
|
||||
|
||||
def get_generate_stream_func(self):
|
||||
# TODO
|
||||
pass
|
||||
|
||||
|
||||
register_llm_model_chat_adapter(VicunaChatAdapter)
|
||||
register_llm_model_chat_adapter(ChatGLMChatAdapter)
|
||||
|
||||
register_llm_model_chat_adapter(BaseChatAdpter)
|
@ -23,20 +23,65 @@ from pilot.model.inference import generate_output, get_embeddings
|
||||
from pilot.model.loader import ModelLoader
|
||||
from pilot.configs.model_config import *
|
||||
from pilot.configs.config import Config
|
||||
from pilot.server.chat_adapter import get_llm_chat_adapter
|
||||
|
||||
|
||||
CFG = Config()
|
||||
model_path = LLM_MODEL_CONFIG[CFG.LLM_MODEL]
|
||||
|
||||
ml = ModelLoader(model_path=model_path)
|
||||
model, tokenizer = ml.loader(num_gpus=1, load_8bit=ISLOAD_8BIT, debug=ISDEBUG)
|
||||
#model, tokenizer = load_model(model_path=model_path, device=DEVICE, num_gpus=1, load_8bit=True, debug=False)
|
||||
|
||||
class ModelWorker:
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
# TODO
|
||||
def __init__(self, model_path, model_name, device, num_gpus=1):
|
||||
|
||||
if model_path.endswith("/"):
|
||||
model_path = model_path[:-1]
|
||||
self.model_name = model_name or model_path.split("/")[-1]
|
||||
self.device = device
|
||||
|
||||
self.ml = ModelLoader(model_path=model_path)
|
||||
self.model, self.tokenizer = self.ml.loader(num_gpus, load_8bit=ISLOAD_8BIT, debug=ISDEBUG)
|
||||
|
||||
if hasattr(self.model.config, "max_sequence_length"):
|
||||
self.context_len = self.model.config.max_sequence_length
|
||||
elif hasattr(self.model.config, "max_position_embeddings"):
|
||||
self.context_len = self.model.config.max_position_embeddings
|
||||
|
||||
else:
|
||||
self.context_len = 2048
|
||||
|
||||
self.llm_chat_adapter = get_llm_chat_adapter(model_path)
|
||||
self.generate_stream_func = self.llm_chat_adapter.get_generate_stream_func()
|
||||
|
||||
def get_queue_length(self):
|
||||
if model_semaphore is None or model_semaphore._value is None or model_semaphore._waiters is None:
|
||||
return 0
|
||||
else:
|
||||
CFG.LIMIT_MODEL_CONCURRENCY - model_semaphore._value + len(model_semaphore._waiters)
|
||||
|
||||
def generate_stream_gate(self, params):
|
||||
try:
|
||||
for output in self.generate_stream_func(
|
||||
self.model,
|
||||
self.tokenizer,
|
||||
params,
|
||||
DEVICE,
|
||||
CFG.MAX_POSITION_EMBEDDINGS
|
||||
):
|
||||
print("output: ", output)
|
||||
ret = {
|
||||
"text": output,
|
||||
"error_code": 0,
|
||||
}
|
||||
yield json.dumps(ret).encode() + b"\0"
|
||||
|
||||
except torch.cuda.CudaError:
|
||||
ret = {
|
||||
"text": "**GPU OutOfMemory, Please Refresh.**",
|
||||
"error_code": 0
|
||||
}
|
||||
yield json.dumps(ret).encode() + b"\0"
|
||||
|
||||
def get_embeddings(self, prompt):
|
||||
return get_embeddings(self.model, self.tokenizer, prompt)
|
||||
|
||||
app = FastAPI()
|
||||
|
||||
@ -61,41 +106,17 @@ def release_model_semaphore():
|
||||
model_semaphore.release()
|
||||
|
||||
|
||||
def generate_stream_gate(params):
|
||||
try:
|
||||
for output in generate_stream(
|
||||
model,
|
||||
tokenizer,
|
||||
params,
|
||||
DEVICE,
|
||||
CFG.MAX_POSITION_EMBEDDINGS,
|
||||
):
|
||||
print("output: ", output)
|
||||
ret = {
|
||||
"text": output,
|
||||
"error_code": 0,
|
||||
}
|
||||
yield json.dumps(ret).encode() + b"\0"
|
||||
except torch.cuda.CudaError:
|
||||
ret = {
|
||||
"text": "**GPU OutOfMemory, Please Refresh.**",
|
||||
"error_code": 0
|
||||
}
|
||||
yield json.dumps(ret).encode() + b"\0"
|
||||
|
||||
|
||||
@app.post("/generate_stream")
|
||||
async def api_generate_stream(request: Request):
|
||||
global model_semaphore, global_counter
|
||||
global_counter += 1
|
||||
params = await request.json()
|
||||
print(model, tokenizer, params, DEVICE)
|
||||
|
||||
if model_semaphore is None:
|
||||
model_semaphore = asyncio.Semaphore(CFG.LIMIT_MODEL_CONCURRENCY)
|
||||
await model_semaphore.acquire()
|
||||
|
||||
generator = generate_stream_gate(params)
|
||||
generator = worker.generate_stream_gate(params)
|
||||
background_tasks = BackgroundTasks()
|
||||
background_tasks.add_task(release_model_semaphore)
|
||||
return StreamingResponse(generator, background=background_tasks)
|
||||
@ -111,7 +132,7 @@ def generate(prompt_request: PromptRequest):
|
||||
|
||||
response = []
|
||||
rsp_str = ""
|
||||
output = generate_stream_gate(params)
|
||||
output = worker.generate_stream_gate(params)
|
||||
for rsp in output:
|
||||
# rsp = rsp.decode("utf-8")
|
||||
rsp_str = str(rsp, "utf-8")
|
||||
@ -125,9 +146,21 @@ def generate(prompt_request: PromptRequest):
|
||||
def embeddings(prompt_request: EmbeddingRequest):
|
||||
params = {"prompt": prompt_request.prompt}
|
||||
print("Received prompt: ", params["prompt"])
|
||||
output = get_embeddings(model, tokenizer, params["prompt"])
|
||||
output = worker.get_embeddings(params["prompt"])
|
||||
return {"response": [float(x) for x in output]}
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
uvicorn.run(app, host="0.0.0.0", log_level="info")
|
||||
|
||||
model_path = LLM_MODEL_CONFIG[CFG.LLM_MODEL]
|
||||
print(model_path, DEVICE)
|
||||
|
||||
|
||||
worker = ModelWorker(
|
||||
model_path=model_path,
|
||||
model_name=CFG.LLM_MODEL,
|
||||
device=DEVICE,
|
||||
num_gpus=1
|
||||
)
|
||||
|
||||
uvicorn.run(app, host="0.0.0.0", port=CFG.MODEL_PORT, log_level="info")
|
@ -369,8 +369,16 @@ def http_bot(state, mode, sql_mode, db_selector, temperature, max_new_tokens, re
|
||||
for chunk in response.iter_lines(decode_unicode=False, delimiter=b"\0"):
|
||||
if chunk:
|
||||
data = json.loads(chunk.decode())
|
||||
|
||||
""" TODO Multi mode output handler, rewrite this for multi model, use adapter mode.
|
||||
"""
|
||||
if data["error_code"] == 0:
|
||||
output = data["text"][skip_echo_len:].strip()
|
||||
|
||||
if "vicuna" in CFG.LLM_MODEL:
|
||||
output = data["text"][skip_echo_len:].strip()
|
||||
else:
|
||||
output = data["text"].strip()
|
||||
|
||||
output = post_process_code(output)
|
||||
state.messages[-1][-1] = output + "▌"
|
||||
yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5
|
||||
@ -445,7 +453,7 @@ def build_single_model_ui():
|
||||
notice_markdown = """
|
||||
# DB-GPT
|
||||
|
||||
[DB-GPT](https://github.com/csunny/DB-GPT) 是一个实验性的开源应用程序,它基于[FastChat](https://github.com/lm-sys/FastChat),并使用vicuna-13b作为基础模型。此外,此程序结合了langchain和llama-index基于现有知识库进行In-Context Learning来对其进行数据库相关知识的增强。它可以进行SQL生成、SQL诊断、数据库知识问答等一系列的工作。 总的来说,它是一个用于数据库的复杂且创新的AI工具。如果您对如何在工作中使用或实施DB-GPT有任何具体问题,请联系我, 我会尽力提供帮助, 同时也欢迎大家参与到项目建设中, 做一些有趣的事情。
|
||||
[DB-GPT](https://github.com/csunny/DB-GPT) 是一个开源的以数据库为基础的GPT实验项目,使用本地化的GPT大模型与您的数据和环境进行交互,无数据泄露风险,100% 私密,100% 安全。
|
||||
"""
|
||||
learn_more_markdown = """
|
||||
### Licence
|
||||
@ -646,7 +654,6 @@ if __name__ == "__main__":
|
||||
cfg = Config()
|
||||
|
||||
# dbs = get_database_list()
|
||||
|
||||
cfg.set_plugins(scan_plugins(cfg, cfg.debug_mode))
|
||||
|
||||
# 加载插件可执行命令
|
||||
|
@ -48,7 +48,7 @@ class KnownLedge2Vector:
|
||||
# vector_store.add_documents(documents=documents)
|
||||
else:
|
||||
documents = self.load_knownlege()
|
||||
# reinit
|
||||
# reinit
|
||||
vector_store = Chroma.from_documents(documents=documents,
|
||||
embedding=self.embeddings,
|
||||
persist_directory=persist_dir)
|
||||
|
@ -67,8 +67,8 @@ class MilvusStore(VectorStoreBase):
|
||||
def init_schema_and_load(self, vector_name, documents):
|
||||
"""Create a Milvus collection, indexes it with HNSW, load document.
|
||||
Args:
|
||||
documents (List[str]): Text to insert.
|
||||
vector_name (Embeddings): your collection name.
|
||||
documents (List[str]): Text to insert.
|
||||
Returns:
|
||||
VectorStore: The MilvusStore vector store.
|
||||
"""
|
||||
@ -203,21 +203,21 @@ class MilvusStore(VectorStoreBase):
|
||||
info = self.collection.describe()
|
||||
self.collection.load()
|
||||
|
||||
def insert(self, text, model_config) -> str:
|
||||
"""Add an embedding of data into milvus.
|
||||
Args:
|
||||
text (str): The raw text to construct embedding index.
|
||||
Returns:
|
||||
str: log.
|
||||
"""
|
||||
# embedding = get_ada_embedding(data)
|
||||
embeddings = HuggingFaceEmbeddings(model_name=self.model_config["model_name"])
|
||||
result = self.collection.insert([embeddings.embed_documents(text), text])
|
||||
_text = (
|
||||
"Inserting data into memory at primary key: "
|
||||
f"{result.primary_keys[0]}:\n data: {text}"
|
||||
)
|
||||
return _text
|
||||
# def insert(self, text, model_config) -> str:
|
||||
# """Add an embedding of data into milvus.
|
||||
# Args:
|
||||
# text (str): The raw text to construct embedding index.
|
||||
# Returns:
|
||||
# str: log.
|
||||
# """
|
||||
# # embedding = get_ada_embedding(data)
|
||||
# embeddings = HuggingFaceEmbeddings(model_name=self.model_config["model_name"])
|
||||
# result = self.collection.insert([embeddings.embed_documents(text), text])
|
||||
# _text = (
|
||||
# "Inserting data into memory at primary key: "
|
||||
# f"{result.primary_keys[0]}:\n data: {text}"
|
||||
# )
|
||||
# return _text
|
||||
|
||||
def _add_texts(
|
||||
self,
|
||||
|
@ -42,6 +42,7 @@ tenacity==8.2.2
|
||||
peft
|
||||
pycocoevalcap
|
||||
sentence-transformers
|
||||
cpm_kernels
|
||||
umap-learn
|
||||
notebook
|
||||
gradio==3.23
|
||||
@ -61,6 +62,13 @@ langchain
|
||||
nltk
|
||||
python-dotenv==1.0.0
|
||||
pymilvus
|
||||
vcrpy
|
||||
chromadb
|
||||
markdown2
|
||||
colorama
|
||||
playsound
|
||||
distro
|
||||
pypdf
|
||||
|
||||
# Testing dependencies
|
||||
pytest
|
||||
@ -70,11 +78,4 @@ pytest-benchmark
|
||||
pytest-cov
|
||||
pytest-integration
|
||||
pytest-mock
|
||||
vcrpy
|
||||
pytest-recording
|
||||
chromadb
|
||||
markdown2
|
||||
colorama
|
||||
playsound
|
||||
distro
|
||||
pypdf
|
||||
pytest-recording
|
@ -36,7 +36,7 @@ class LocalKnowledgeInit:
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--vector_name", type=str, default="keting")
|
||||
parser.add_argument("--vector_name", type=str, default="default")
|
||||
parser.add_argument("--append", type=bool, default=False)
|
||||
parser.add_argument("--store_type", type=str, default="Chroma")
|
||||
args = parser.parse_args()
|
||||
|
Loading…
Reference in New Issue
Block a user