mirror of
https://github.com/csunny/DB-GPT.git
synced 2025-07-31 07:34:07 +00:00
fix:knowledge_init.py multi document cannot search answser (#287)
1.rebuild knowledge_init.py 2.change the VectorConnector position Close #285
This commit is contained in:
commit
c04d8e0bbf
@ -51,6 +51,7 @@ class KnowledgeEmbedding:
|
||||
self.knowledge_embedding_client.index_to_store(docs)
|
||||
|
||||
def read(self):
|
||||
self.knowledge_embedding_client = self.init_knowledge_embedding()
|
||||
return self.knowledge_embedding_client.read_batch()
|
||||
|
||||
def init_knowledge_embedding(self):
|
||||
|
@ -33,9 +33,6 @@ class SourceEmbedding(ABC):
|
||||
self.vector_store_config = vector_store_config
|
||||
self.embedding_args = embedding_args
|
||||
self.embeddings = vector_store_config["embeddings"]
|
||||
self.vector_client = VectorStoreConnector(
|
||||
CFG.VECTOR_STORE_TYPE, vector_store_config
|
||||
)
|
||||
|
||||
@abstractmethod
|
||||
@register
|
||||
@ -59,11 +56,17 @@ class SourceEmbedding(ABC):
|
||||
@register
|
||||
def index_to_store(self, docs):
|
||||
"""index to vector store"""
|
||||
self.vector_client = VectorStoreConnector(
|
||||
CFG.VECTOR_STORE_TYPE, self.vector_store_config
|
||||
)
|
||||
self.vector_client.load_document(docs)
|
||||
|
||||
@register
|
||||
def similar_search(self, doc, topk):
|
||||
"""vector store similarity_search"""
|
||||
self.vector_client = VectorStoreConnector(
|
||||
CFG.VECTOR_STORE_TYPE, self.vector_store_config
|
||||
)
|
||||
try:
|
||||
ans = self.vector_client.similar_search(doc, topk)
|
||||
except NotEnoughElementsException:
|
||||
@ -71,6 +74,9 @@ class SourceEmbedding(ABC):
|
||||
return ans
|
||||
|
||||
def vector_name_exist(self):
|
||||
self.vector_client = VectorStoreConnector(
|
||||
CFG.VECTOR_STORE_TYPE, self.vector_store_config
|
||||
)
|
||||
return self.vector_client.vector_name_exists()
|
||||
|
||||
def source_embedding(self):
|
||||
|
@ -25,17 +25,20 @@ class LocalKnowledgeInit:
|
||||
|
||||
def knowledge_persist(self, file_path):
|
||||
"""knowledge persist"""
|
||||
docs = []
|
||||
embedding_engine = None
|
||||
for root, _, files in os.walk(file_path, topdown=False):
|
||||
for file in files:
|
||||
filename = os.path.join(root, file)
|
||||
# docs = self._load_file(filename)
|
||||
ke = KnowledgeEmbedding(
|
||||
file_path=filename,
|
||||
model_name=self.model_name,
|
||||
vector_store_config=self.vector_store_config,
|
||||
)
|
||||
client = ke.init_knowledge_embedding()
|
||||
client.source_embedding()
|
||||
embedding_engine = ke.init_knowledge_embedding()
|
||||
doc = ke.read()
|
||||
docs.extend(doc)
|
||||
embedding_engine.index_to_store(docs)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
Loading…
Reference in New Issue
Block a user