feat: Support 8-bit quantization and 4-bit quantization for multi-gpu inference

This commit is contained in:
FangYin Cheng 2023-08-02 15:51:57 +08:00
parent e16a5ccfc9
commit d8a4b776d5
8 changed files with 368 additions and 93 deletions

View File

@ -1,25 +1,48 @@
FROM nvidia/cuda:11.8.0-devel-ubuntu22.04
ARG BASE_IMAGE="nvidia/cuda:11.8.0-devel-ubuntu22.04"
FROM ${BASE_IMAGE}
ARG BASE_IMAGE
RUN apt-get update && apt-get install -y git python3 pip wget \
&& apt-get clean
# download code from githu: https://github.com/csunny/DB-GPT
# ENV DBGPT_VERSION="v0.3.3"
# RUN wget https://github.com/csunny/DB-GPT/archive/refs/tags/$DBGPT_VERSION.zip
ARG BUILD_LOCAL_CODE="false"
ARG LANGUAGE="en"
ARG PIP_INDEX_URL="https://pypi.org/simple"
ENV PIP_INDEX_URL=$PIP_INDEX_URL
# clone latest code, and rename to /app
RUN git clone https://github.com/csunny/DB-GPT.git /app
# COPY only requirements.txt first to leverage Docker cache
COPY ./requirements.txt /tmp/requirements.txt
WORKDIR /app
RUN pip3 install --upgrade pip \
&& pip3 install --no-cache-dir -r requirements.txt \
&& pip3 install seaborn mpld3 \
&& wget https://github.com/explosion/spacy-models/releases/download/zh_core_web_sm-3.5.0/zh_core_web_sm-3.5.0-py3-none-any.whl -O /tmp/zh_core_web_sm-3.5.0-py3-none-any.whl \
&& pip3 install /tmp/zh_core_web_sm-3.5.0-py3-none-any.whl \
&& rm /tmp/zh_core_web_sm-3.5.0-py3-none-any.whl \
&& rm -rf `pip3 cache dir`
RUN pip3 install --upgrade pip -i $PIP_INDEX_URL \
&& (if [ "${BUILD_LOCAL_CODE}" = "false" ]; \
# if not build local code, clone latest code from git, and rename to /app, TODO: download by version, like: https://github.com/eosphoros-ai/DB-GPT/archive/refs/tags/$DBGPT_VERSION.zip
then git clone https://github.com/eosphoros-ai/DB-GPT.git /app \
&& cp /app/requirements.txt /tmp/requirements.txt; \
fi;) \
&& pip3 install -r /tmp/requirements.txt -i $PIP_INDEX_URL --no-cache-dir \
&& rm /tmp/requirements.txt
# RUN python3 -m spacy download zh_core_web_sm
RUN (if [ "${LANGUAGE}" = "zh" ]; \
# language is zh, download zh_core_web_sm from github
then wget https://github.com/explosion/spacy-models/releases/download/zh_core_web_sm-3.5.0/zh_core_web_sm-3.5.0-py3-none-any.whl -O /tmp/zh_core_web_sm-3.5.0-py3-none-any.whl \
&& pip3 install /tmp/zh_core_web_sm-3.5.0-py3-none-any.whl -i $PIP_INDEX_URL \
&& rm /tmp/zh_core_web_sm-3.5.0-py3-none-any.whl; \
# not zh, download directly
else python3 -m spacy download zh_core_web_sm; \
fi;) \
&& rm -rf `pip3 cache dir`
ARG BUILD_LOCAL_CODE="false"
# COPY the rest of the app
COPY . /tmp/app
# TODONeed to find a better way to determine whether to build docker image with local code.
RUN (if [ "${BUILD_LOCAL_CODE}" = "true" ]; \
then mv /tmp/app / && rm -rf /app/logs && rm -rf /app/pilot/data && rm -rf /app/pilot/message; \
else rm -rf /tmp/app; \
fi;)
EXPOSE 5000

View File

@ -4,5 +4,72 @@ SCRIPT_LOCATION=$0
cd "$(dirname "$SCRIPT_LOCATION")"
WORK_DIR=$(pwd)
BASE_IMAGE="nvidia/cuda:11.8.0-devel-ubuntu22.04"
IMAGE_NAME="db-gpt"
docker build -f Dockerfile -t $IMAGE_NAME $WORK_DIR/../../
# zh: https://pypi.tuna.tsinghua.edu.cn/simple
PIP_INDEX_URL="https://pypi.org/simple"
# en or zh
LANGUAGE="en"
BUILD_LOCAL_CODE="false"
usage () {
echo "USAGE: $0 [--base-image nvidia/cuda:11.8.0-devel-ubuntu22.04] [--image-name db-gpt]"
echo " [-b|--base-image base image name] Base image name"
echo " [-n|--image-name image name] Current image name, default: db-gpt"
echo " [-i|--pip-index-url pip index url] Pip index url, default: https://pypi.org/simple"
echo " [--language en or zh] You language, default: en"
echo " [--build-local-code true or false] Whether to use the local project code to package the image, default: false"
echo " [-h|--help] Usage message"
}
while [[ $# -gt 0 ]]; do
key="$1"
case $key in
-b|--base-image)
BASE_IMAGE="$2"
shift # past argument
shift # past value
;;
-n|--image-name)
IMAGE_NAME="$2"
shift # past argument
shift # past value
;;
-i|--pip-index-url)
PIP_INDEX="$2"
shift
shift
;;
--language)
LANGUAGE="$2"
shift
shift
;;
--build-local-code)
BUILD_LOCAL_CODE="$2"
shift
shift
;;
-h|--help)
help="true"
shift
;;
*)
usage
exit 1
;;
esac
done
if [[ $help ]]; then
usage
exit 0
fi
docker build \
--build-arg BASE_IMAGE=$BASE_IMAGE \
--build-arg PIP_INDEX_URL=$PIP_INDEX_URL \
--build-arg LANGUAGE=$LANGUAGE \
--build-arg BUILD_LOCAL_CODE=$BUILD_LOCAL_CODE \
-f Dockerfile \
-t $IMAGE_NAME $WORK_DIR/../../

View File

@ -4,6 +4,11 @@ SCRIPT_LOCATION=$0
cd "$(dirname "$SCRIPT_LOCATION")"
WORK_DIR=$(pwd)
bash $WORK_DIR/base/build_image.sh
bash $WORK_DIR/base/build_image.sh "$@"
if [ 0 -ne $? ]; then
ehco "Error: build base image failed"
exit 1
fi
bash $WORK_DIR/allinone/build_image.sh

View File

@ -247,7 +247,7 @@ def remove_color_codes(s: str) -> str:
return ansi_escape.sub("", s)
logger = Logger()
logger: Logger = Logger()
def print_assistant_thoughts(

View File

@ -28,6 +28,9 @@ class BaseLLMAdaper:
"""The Base class for multi model, in our project.
We will support those model, which performance resemble ChatGPT"""
def use_fast_tokenizer(self) -> bool:
return False
def match(self, model_path: str):
return True

View File

@ -1,44 +1,70 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import sys
import warnings
from typing import Optional
from typing import Optional, Dict
import dataclasses
import torch
from pilot.configs.model_config import DEVICE
from pilot.model.adapter import get_llm_model_adapter
from pilot.model.adapter import get_llm_model_adapter, BaseLLMAdaper
from pilot.model.compression import compress_module
from pilot.model.llm.monkey_patch import replace_llama_attn_with_non_inplace_operations
from pilot.singleton import Singleton
from pilot.utils import get_gpu_memory
from pilot.logs import logger
def raise_warning_for_incompatible_cpu_offloading_configuration(
device: str, load_8bit: bool, cpu_offloading: bool
):
if cpu_offloading:
if not load_8bit:
warnings.warn(
"The cpu-offloading feature can only be used while also using 8-bit-quantization.\n"
"Use '--load-8bit' to enable 8-bit-quantization\n"
"Continuing without cpu-offloading enabled\n"
class ModelType:
""" "Type of model"""
HF = "huggingface"
LLAMA_CPP = "llama.cpp"
# TODO, support more model type
@dataclasses.dataclass
class ModelParams:
device: str
model_name: str
model_path: str
model_type: Optional[str] = ModelType.HF
num_gpus: Optional[int] = None
max_gpu_memory: Optional[str] = None
cpu_offloading: Optional[bool] = False
load_8bit: Optional[bool] = True
load_4bit: Optional[bool] = False
# quantization datatypes, `fp4` (four bit float) and `nf4` (normal four bit float)
quant_type: Optional[str] = "nf4"
# Nested quantization is activated through `use_double_quant``
use_double_quant: Optional[bool] = True
# "bfloat16", "float16", "float32"
compute_dtype: Optional[str] = None
debug: Optional[bool] = False
trust_remote_code: Optional[bool] = True
def _check_multi_gpu_or_4bit_quantization(model_params: ModelParams):
model_name = model_params.model_name.lower()
supported_models = ["llama", "baichuan", "vicuna"]
return any(m in model_name for m in supported_models)
def _check_quantization(model_params: ModelParams):
model_name = model_params.model_name.lower()
has_quantization = any([model_params.load_8bit or model_params.load_4bit])
if has_quantization:
if model_params.device != "cuda":
logger.warn(
"8-bit quantization and 4-bit quantization just supported by cuda"
)
return False
if not "linux" in sys.platform:
warnings.warn(
"CPU-offloading is only supported on linux-systems due to the limited compatability with the bitsandbytes-package\n"
"Continuing without cpu-offloading enabled\n"
)
elif "chatglm" in model_name:
if "int4" not in model_name:
logger.warn(
"chatglm or chatglm2 not support quantization now, see: https://github.com/huggingface/transformers/issues/25228"
)
return False
if device != "cuda":
warnings.warn(
"CPU-offloading is only enabled when using CUDA-devices\n"
"Continuing without cpu-offloading enabled\n"
)
return False
return cpu_offloading
return has_quantization
class ModelLoader(metaclass=Singleton):
@ -51,9 +77,10 @@ class ModelLoader(metaclass=Singleton):
kwargs = {}
def __init__(self, model_path) -> None:
def __init__(self, model_path: str, model_name: str = None) -> None:
self.device = DEVICE
self.model_path = model_path
self.model_name = model_name
self.kwargs = {
"torch_dtype": torch.float16,
"device_map": "auto",
@ -64,64 +91,213 @@ class ModelLoader(metaclass=Singleton):
self,
num_gpus,
load_8bit=False,
load_4bit=False,
debug=False,
cpu_offloading=False,
max_gpu_memory: Optional[str] = None,
):
if self.device == "cpu":
kwargs = {"torch_dtype": torch.float32}
model_params = ModelParams(
device=self.device,
model_path=self.model_path,
model_name=self.model_name,
num_gpus=num_gpus,
max_gpu_memory=max_gpu_memory,
cpu_offloading=cpu_offloading,
load_8bit=load_8bit,
load_4bit=load_4bit,
debug=debug,
)
elif self.device == "cuda":
kwargs = {"torch_dtype": torch.float16}
num_gpus = torch.cuda.device_count()
llm_adapter = get_llm_model_adapter(model_params.model_path)
return huggingface_loader(llm_adapter, model_params)
if num_gpus != 1:
kwargs["device_map"] = "auto"
# if max_gpu_memory is None:
# kwargs["device_map"] = "sequential"
available_gpu_memory = get_gpu_memory(num_gpus)
kwargs["max_memory"] = {
i: str(int(available_gpu_memory[i] * 0.85)) + "GiB"
for i in range(num_gpus)
}
def huggingface_loader(llm_adapter: BaseLLMAdaper, model_params: ModelParams):
device = model_params.device
max_memory = None
if device == "cpu":
kwargs = {"torch_dtype": torch.float32}
elif device == "cuda":
kwargs = {"torch_dtype": torch.float16}
num_gpus = torch.cuda.device_count()
available_gpu_memory = get_gpu_memory(num_gpus)
max_memory = {
i: str(int(available_gpu_memory[i] * 0.85)) + "GiB" for i in range(num_gpus)
}
if num_gpus != 1:
kwargs["device_map"] = "auto"
kwargs["max_memory"] = max_memory
elif model_params.max_gpu_memory:
logger.info(
f"There has max_gpu_memory from config: {model_params.max_gpu_memory}"
)
max_memory = {i: model_params.max_gpu_memory for i in range(num_gpus)}
kwargs["max_memory"] = max_memory
logger.debug(f"max_memory: {max_memory}")
else:
kwargs["max_memory"] = {i: max_gpu_memory for i in range(num_gpus)}
elif device == "mps":
kwargs = {"torch_dtype": torch.float16}
replace_llama_attn_with_non_inplace_operations()
else:
raise ValueError(f"Invalid device: {device}")
elif self.device == "mps":
kwargs = kwargs = {"torch_dtype": torch.float16}
replace_llama_attn_with_non_inplace_operations()
can_quantization = _check_quantization(model_params)
if can_quantization and (num_gpus > 1 or model_params.load_4bit):
if _check_multi_gpu_or_4bit_quantization(model_params):
return load_huggingface_quantization_model(
llm_adapter, model_params, kwargs, max_memory
)
else:
raise ValueError(f"Invalid device: {self.device}")
logger.warn(
f"Current model {model_params.model_name} not supported quantization"
)
# default loader
model, tokenizer = llm_adapter.loader(model_params.model_path, kwargs)
# TODO when cpu loading, need use quantization config
if model_params.load_8bit and num_gpus == 1 and tokenizer:
# TODO merge current code into `load_huggingface_quantization_model`
compress_module(model, model_params.device)
llm_adapter = get_llm_model_adapter(self.model_path)
model, tokenizer = llm_adapter.loader(self.model_path, kwargs)
if (
(device == "cuda" and num_gpus == 1 and not model_params.cpu_offloading)
or device == "mps"
and tokenizer
):
try:
model.to(device)
except ValueError:
pass
except AttributeError:
pass
if model_params.debug:
print(model)
return model, tokenizer
if load_8bit and tokenizer:
if num_gpus != 1:
warnings.warn(
"8-bit quantization is not supported for multi-gpu inference"
)
else:
compress_module(model, self.device)
if (
(self.device == "cuda" and num_gpus == 1 and not cpu_offloading)
or self.device == "mps"
and tokenizer
):
# 4-bit not support this
try:
model.to(self.device)
except ValueError:
pass
except AttributeError:
pass
def load_huggingface_quantization_model(
llm_adapter: BaseLLMAdaper,
model_params: ModelParams,
kwargs: Dict,
max_memory: Dict[int, str],
):
try:
from accelerate import init_empty_weights
from accelerate.utils import infer_auto_device_map
import transformers
from transformers import (
BitsAndBytesConfig,
AutoConfig,
AutoModel,
AutoModelForCausalLM,
LlamaForCausalLM,
AutoModelForSeq2SeqLM,
LlamaTokenizer,
AutoTokenizer,
)
except ImportError as exc:
raise ValueError(
"Could not import depend python package "
"Please install it with `pip install transformers` "
"`pip install bitsandbytes``pip install accelerate`."
) from exc
if (
"llama-2" in model_params.model_name.lower()
and not transformers.__version__ >= "4.31.0"
):
raise ValueError(
"Llama-2 quantization require transformers.__version__>=4.31.0"
)
params = {"low_cpu_mem_usage": True}
params["low_cpu_mem_usage"] = True
params["device_map"] = "auto"
if debug:
print(model)
torch_dtype = kwargs.get("torch_dtype")
return model, tokenizer
if model_params.load_4bit:
compute_dtype = None
if model_params.compute_dtype and model_params.compute_dtype in [
"bfloat16",
"float16",
"float32",
]:
compute_dtype = eval("torch.{}".format(model_params.compute_dtype))
quantization_config_params = {
"load_in_4bit": True,
"bnb_4bit_compute_dtype": compute_dtype,
"bnb_4bit_quant_type": model_params.quant_type,
"bnb_4bit_use_double_quant": model_params.use_double_quant,
}
logger.warn(
"Using the following 4-bit params: " + str(quantization_config_params)
)
params["quantization_config"] = BitsAndBytesConfig(**quantization_config_params)
elif model_params.load_8bit and max_memory:
params["quantization_config"] = BitsAndBytesConfig(
load_in_8bit=True, llm_int8_enable_fp32_cpu_offload=True
)
elif model_params.load_in_8bit:
params["quantization_config"] = BitsAndBytesConfig(load_in_8bit=True)
params["torch_dtype"] = torch_dtype if torch_dtype else torch.float16
params["max_memory"] = max_memory
if "chatglm" in model_params.model_name.lower():
LoaderClass = AutoModel
else:
config = AutoConfig.from_pretrained(
model_params.model_path, trust_remote_code=model_params.trust_remote_code
)
if config.to_dict().get("is_encoder_decoder", False):
LoaderClass = AutoModelForSeq2SeqLM
else:
LoaderClass = AutoModelForCausalLM
if model_params.load_8bit and max_memory is not None:
config = AutoConfig.from_pretrained(
model_params.model_path, trust_remote_code=model_params.trust_remote_code
)
with init_empty_weights():
model = LoaderClass.from_config(
config, trust_remote_code=model_params.trust_remote_code
)
model.tie_weights()
params["device_map"] = infer_auto_device_map(
model,
dtype=torch.int8,
max_memory=params["max_memory"].copy(),
no_split_module_classes=model._no_split_modules,
)
try:
if model_params.trust_remote_code:
params["trust_remote_code"] = True
logger.info(f"params: {params}")
model = LoaderClass.from_pretrained(model_params.model_path, **params)
except Exception as e:
logger.error(
f"Load quantization model failed, error: {str(e)}, params: {params}"
)
raise e
# Loading the tokenizer
if type(model) is LlamaForCausalLM:
tokenizer = LlamaTokenizer.from_pretrained(
model_params.model_path, clean_up_tokenization_spaces=True
)
# Leaving this here until the LLaMA tokenizer gets figured out.
# For some people this fixes things, for others it causes an error.
try:
tokenizer.eos_token_id = 2
tokenizer.bos_token_id = 1
tokenizer.pad_token_id = 0
except Exception as e:
logger.warn(f"{str(e)}")
else:
tokenizer = AutoTokenizer.from_pretrained(
model_params.model_path,
trust_remote_code=model_params.trust_remote_code,
use_fast=llm_adapter.use_fast_tokenizer(),
)
return model, tokenizer

View File

@ -37,7 +37,7 @@ class ModelWorker:
self.model_name = model_name or model_path.split("/")[-1]
self.device = device
print(f"Loading {model_name} LLM ModelServer in {device}! Please Wait......")
self.ml = ModelLoader(model_path=model_path)
self.ml = ModelLoader(model_path=model_path, model_name=self.model_name)
self.model, self.tokenizer = self.ml.loader(
num_gpus, load_8bit=ISLOAD_8BIT, debug=ISDEBUG
)

View File

@ -1,10 +1,8 @@
torch==2.0.0
accelerate==0.16.0
aiohttp==3.8.4
aiosignal==1.3.1
async-timeout==4.0.2
attrs==22.2.0
bitsandbytes==0.39.0
cchardet==2.1.7
chardet==5.1.0
contourpy==1.0.7
@ -27,7 +25,7 @@ python-dateutil==2.8.2
pyyaml==6.0
tokenizers==0.13.2
tqdm==4.64.1
transformers==4.30.0
transformers>=4.31.0
transformers_stream_generator
timm==0.6.13
spacy==3.5.3
@ -48,6 +46,9 @@ gradio-client==0.0.8
wandb
llama-index==0.5.27
bitsandbytes
accelerate>=0.20.3
unstructured==0.6.3
grpcio==1.47.5
gpt4all==0.3.0