mirror of
https://github.com/csunny/DB-GPT.git
synced 2025-08-10 20:52:33 +00:00
feat: knowledge management backend api
1.create knowledge space 2.list knowledge space 3.create knowledge document 4.list knowledge document 5.save document chunks 6.sync embedding document
This commit is contained in:
parent
364f251a12
commit
db28894443
@ -48,9 +48,10 @@ class KnowledgeEmbedding:
|
||||
|
||||
def knowledge_embedding_batch(self, docs):
|
||||
# docs = self.knowledge_embedding_client.read_batch()
|
||||
self.knowledge_embedding_client.index_to_store(docs)
|
||||
return self.knowledge_embedding_client.index_to_store(docs)
|
||||
|
||||
def read(self):
|
||||
self.knowledge_embedding_client = self.init_knowledge_embedding()
|
||||
return self.knowledge_embedding_client.read_batch()
|
||||
|
||||
def init_knowledge_embedding(self):
|
||||
@ -66,7 +67,7 @@ class KnowledgeEmbedding:
|
||||
embedding = knowledge_class(
|
||||
self.file_path,
|
||||
vector_store_config=self.vector_store_config,
|
||||
**knowledge_args,
|
||||
**knowledge_args
|
||||
)
|
||||
return embedding
|
||||
raise ValueError(f"Unsupported knowledge file type '{extension}'")
|
||||
|
@ -59,7 +59,7 @@ class SourceEmbedding(ABC):
|
||||
@register
|
||||
def index_to_store(self, docs):
|
||||
"""index to vector store"""
|
||||
self.vector_client.load_document(docs)
|
||||
return self.vector_client.load_document(docs)
|
||||
|
||||
@register
|
||||
def similar_search(self, doc, topk):
|
||||
|
@ -42,7 +42,7 @@ class ChatUrlKnowledge(BaseChat):
|
||||
"vector_store_path": KNOWLEDGE_UPLOAD_ROOT_PATH,
|
||||
}
|
||||
self.knowledge_embedding_client = KnowledgeEmbedding(
|
||||
model_name=LLM_MODEL_CONFIG["text2vec"],
|
||||
model_name=LLM_MODEL_CONFIG[CFG.EMBEDDING_MODEL],
|
||||
vector_store_config=vector_store_config,
|
||||
file_type="url",
|
||||
file_path=url,
|
||||
|
@ -6,21 +6,21 @@ T = TypeVar('T')
|
||||
|
||||
class Result(Generic[T], BaseModel):
|
||||
success: bool
|
||||
err_code: str
|
||||
err_msg: str
|
||||
data: List[T]
|
||||
err_code: str = None
|
||||
err_msg: str = None
|
||||
data: List[T] = None
|
||||
|
||||
@classmethod
|
||||
def succ(cls, data: List[T]):
|
||||
return Result(True, None, None, data)
|
||||
return Result(success=True, err_code=None, err_msg=None, data=data)
|
||||
|
||||
@classmethod
|
||||
def faild(cls, msg):
|
||||
return Result(True, "E000X", msg, None)
|
||||
return Result(success=False, err_code="E000X", err_msg=msg, data=None)
|
||||
|
||||
@classmethod
|
||||
def faild(cls, code, msg):
|
||||
return Result(True, code, msg, None)
|
||||
return Result(success=False, err_code=code, err_msg=msg, data=None)
|
||||
|
||||
|
||||
class ConversationVo(BaseModel):
|
||||
|
83
pilot/server/knowledge/document_chunk_dao.py
Normal file
83
pilot/server/knowledge/document_chunk_dao.py
Normal file
@ -0,0 +1,83 @@
|
||||
from datetime import datetime
|
||||
from typing import List
|
||||
|
||||
from sqlalchemy import Column, String, DateTime, Integer, Text, create_engine
|
||||
from sqlalchemy.orm import declarative_base, sessionmaker
|
||||
|
||||
from pilot.configs.config import Config
|
||||
|
||||
|
||||
CFG = Config()
|
||||
|
||||
Base = declarative_base()
|
||||
class DocumentChunkEntity(Base):
|
||||
__tablename__ = 'document_chunk'
|
||||
id = Column(Integer, primary_key=True)
|
||||
document_id = Column(Integer)
|
||||
doc_name = Column(String(100))
|
||||
doc_type = Column(String(100))
|
||||
content = Column(Text)
|
||||
meta_info = Column(String(500))
|
||||
gmt_created = Column(DateTime)
|
||||
gmt_modified = Column(DateTime)
|
||||
|
||||
def __repr__(self):
|
||||
return f"DocumentChunkEntity(id={self.id}, doc_name='{self.doc_name}', doc_type='{self.doc_type}', document_id='{self.document_id}', content='{self.content}', meta_info='{self.meta_info}', gmt_created='{self.gmt_created}', gmt_modified='{self.gmt_modified}')"
|
||||
|
||||
|
||||
class DocumentChunkDao:
|
||||
def __init__(self):
|
||||
database = "knowledge_management"
|
||||
self.db_engine = create_engine(
|
||||
f'mysql+pymysql://{CFG.LOCAL_DB_USER}:{CFG.LOCAL_DB_PASSWORD}@{CFG.LOCAL_DB_HOST}:{CFG.LOCAL_DB_PORT}/{database}',
|
||||
echo=True)
|
||||
self.Session = sessionmaker(bind=self.db_engine)
|
||||
|
||||
def create_documents_chunks(self, documents:List):
|
||||
session = self.Session()
|
||||
docs = [
|
||||
DocumentChunkEntity(
|
||||
doc_name=document.doc_name,
|
||||
doc_type=document.doc_type,
|
||||
document_id=document.document_id,
|
||||
content=document.content or "",
|
||||
meta_info=document.meta_info or "",
|
||||
gmt_created=datetime.now(),
|
||||
gmt_modified=datetime.now()
|
||||
)
|
||||
for document in documents]
|
||||
session.add_all(docs)
|
||||
session.commit()
|
||||
session.close()
|
||||
|
||||
def get_document_chunks(self, query:DocumentChunkEntity, page=1, page_size=20):
|
||||
session = self.Session()
|
||||
document_chunks = session.query(DocumentChunkEntity)
|
||||
if query.id is not None:
|
||||
document_chunks = document_chunks.filter(DocumentChunkEntity.id == query.id)
|
||||
if query.document_id is not None:
|
||||
document_chunks = document_chunks.filter(DocumentChunkEntity.document_id == query.document_id)
|
||||
if query.doc_type is not None:
|
||||
document_chunks = document_chunks.filter(DocumentChunkEntity.doc_type == query.doc_type)
|
||||
if query.doc_name is not None:
|
||||
document_chunks = document_chunks.filter(DocumentChunkEntity.doc_name == query.doc_name)
|
||||
if query.meta_info is not None:
|
||||
document_chunks = document_chunks.filter(DocumentChunkEntity.meta_info == query.meta_info)
|
||||
|
||||
document_chunks = document_chunks.order_by(DocumentChunkEntity.id.desc())
|
||||
document_chunks = document_chunks.offset((page - 1) * page_size).limit(page_size)
|
||||
result = document_chunks.all()
|
||||
return result
|
||||
|
||||
# def update_knowledge_document(self, document:KnowledgeDocumentEntity):
|
||||
# session = self.Session()
|
||||
# updated_space = session.merge(document)
|
||||
# session.commit()
|
||||
# return updated_space.id
|
||||
|
||||
# def delete_knowledge_document(self, document_id:int):
|
||||
# cursor = self.conn.cursor()
|
||||
# query = "DELETE FROM knowledge_document WHERE id = %s"
|
||||
# cursor.execute(query, (document_id,))
|
||||
# self.conn.commit()
|
||||
# cursor.close()
|
111
pilot/server/knowledge/knowledge_controller.py
Normal file
111
pilot/server/knowledge/knowledge_controller.py
Normal file
@ -0,0 +1,111 @@
|
||||
import json
|
||||
import os
|
||||
import sys
|
||||
from typing import List
|
||||
|
||||
from fastapi import APIRouter
|
||||
from langchain.embeddings import HuggingFaceEmbeddings
|
||||
ROOT_PATH = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
||||
sys.path.append(ROOT_PATH)
|
||||
|
||||
from pilot.configs.config import Config
|
||||
from pilot.configs.model_config import LLM_MODEL_CONFIG
|
||||
|
||||
from pilot.server.api_v1.api_view_model import Result
|
||||
from pilot.embedding_engine.knowledge_embedding import KnowledgeEmbedding
|
||||
|
||||
from pilot.server.knowledge.knowledge_service import KnowledgeService
|
||||
from pilot.server.knowledge.request.knowledge_request import (
|
||||
KnowledgeQueryRequest,
|
||||
KnowledgeQueryResponse, KnowledgeDocumentRequest, DocumentSyncRequest, ChunkQueryRequest, DocumentQueryRequest,
|
||||
)
|
||||
|
||||
from pilot.server.knowledge.request.knowledge_request import KnowledgeSpaceRequest
|
||||
|
||||
CFG = Config()
|
||||
router = APIRouter()
|
||||
|
||||
|
||||
embeddings = HuggingFaceEmbeddings(model_name=LLM_MODEL_CONFIG[CFG.EMBEDDING_MODEL])
|
||||
|
||||
knowledge_space_service = KnowledgeService()
|
||||
|
||||
|
||||
@router.post("/knowledge/space/add")
|
||||
def space_add(request: KnowledgeSpaceRequest):
|
||||
print(f"/space/add params: {request}")
|
||||
try:
|
||||
knowledge_space_service.create_knowledge_space(request)
|
||||
return Result.succ([])
|
||||
except Exception as e:
|
||||
return Result.faild(code="E000X", msg=f"space add error {e}")
|
||||
|
||||
|
||||
@router.post("/knowledge/space/list")
|
||||
def space_list(request: KnowledgeSpaceRequest):
|
||||
print(f"/space/list params:")
|
||||
try:
|
||||
return Result.succ(knowledge_space_service.get_knowledge_space(request))
|
||||
except Exception as e:
|
||||
return Result.faild(code="E000X", msg=f"space list error {e}")
|
||||
|
||||
|
||||
@router.post("/knowledge/{space_name}/document/add")
|
||||
def document_add(space_name: str, request: KnowledgeDocumentRequest):
|
||||
print(f"/document/add params: {space_name}, {request}")
|
||||
try:
|
||||
knowledge_space_service.create_knowledge_document(
|
||||
space=space_name, request=request
|
||||
)
|
||||
return Result.succ([])
|
||||
except Exception as e:
|
||||
return Result.faild(code="E000X", msg=f"document add error {e}")
|
||||
|
||||
|
||||
@router.post("/knowledge/{space_name}/document/list")
|
||||
def document_list(space_name: str, query_request: DocumentQueryRequest):
|
||||
print(f"/document/list params: {space_name}, {query_request}")
|
||||
try:
|
||||
return Result.succ(knowledge_space_service.get_knowledge_documents(
|
||||
space_name,
|
||||
query_request
|
||||
))
|
||||
except Exception as e:
|
||||
return Result.faild(code="E000X", msg=f"document list error {e}")
|
||||
|
||||
|
||||
@router.post("/knowledge/{space_name}/document/sync")
|
||||
def document_sync(space_name: str, request: DocumentSyncRequest):
|
||||
print(f"Received params: {space_name}, {request}")
|
||||
try:
|
||||
knowledge_space_service.sync_knowledge_document(
|
||||
space_name=space_name, doc_ids=request.doc_ids
|
||||
)
|
||||
Result.succ([])
|
||||
except Exception as e:
|
||||
return Result.faild(code="E000X", msg=f"document sync error {e}")
|
||||
|
||||
|
||||
@router.post("/knowledge/{space_name}/chunk/list")
|
||||
def document_list(space_name: str, query_request: ChunkQueryRequest):
|
||||
print(f"/document/list params: {space_name}, {query_request}")
|
||||
try:
|
||||
Result.succ(knowledge_space_service.get_document_chunks(
|
||||
query_request
|
||||
))
|
||||
except Exception as e:
|
||||
return Result.faild(code="E000X", msg=f"document chunk list error {e}")
|
||||
|
||||
|
||||
@router.post("/knowledge/{vector_name}/query")
|
||||
def similar_query(space_name: str, query_request: KnowledgeQueryRequest):
|
||||
print(f"Received params: {space_name}, {query_request}")
|
||||
client = KnowledgeEmbedding(
|
||||
model_name=embeddings, vector_store_config={"vector_store_name": space_name}
|
||||
)
|
||||
docs = client.similar_search(query_request.query, query_request.top_k)
|
||||
res = [
|
||||
KnowledgeQueryResponse(text=d.page_content, source=d.metadata["source"])
|
||||
for d in docs
|
||||
]
|
||||
return {"response": res}
|
87
pilot/server/knowledge/knowledge_document_dao.py
Normal file
87
pilot/server/knowledge/knowledge_document_dao.py
Normal file
@ -0,0 +1,87 @@
|
||||
from datetime import datetime
|
||||
|
||||
from sqlalchemy import Column, String, DateTime, Integer, Text, create_engine
|
||||
from sqlalchemy.orm import declarative_base, sessionmaker
|
||||
|
||||
from pilot.configs.config import Config
|
||||
|
||||
|
||||
CFG = Config()
|
||||
|
||||
Base = declarative_base()
|
||||
class KnowledgeDocumentEntity(Base):
|
||||
__tablename__ = 'knowledge_document'
|
||||
id = Column(Integer, primary_key=True)
|
||||
doc_name = Column(String(100))
|
||||
doc_type = Column(String(100))
|
||||
space = Column(String(100))
|
||||
chunk_size = Column(Integer)
|
||||
status = Column(String(100))
|
||||
last_sync = Column(String(100))
|
||||
content = Column(Text)
|
||||
vector_ids = Column(Text)
|
||||
gmt_created = Column(DateTime)
|
||||
gmt_modified = Column(DateTime)
|
||||
|
||||
def __repr__(self):
|
||||
return f"KnowledgeDocumentEntity(id={self.id}, doc_name='{self.doc_name}', doc_type='{self.doc_type}', chunk_size='{self.chunk_size}', status='{self.status}', last_sync='{self.last_sync}', content='{self.content}', gmt_created='{self.gmt_created}', gmt_modified='{self.gmt_modified}')"
|
||||
|
||||
|
||||
class KnowledgeDocumentDao:
|
||||
def __init__(self):
|
||||
database = "knowledge_management"
|
||||
self.db_engine = create_engine(
|
||||
f'mysql+pymysql://{CFG.LOCAL_DB_USER}:{CFG.LOCAL_DB_PASSWORD}@{CFG.LOCAL_DB_HOST}:{CFG.LOCAL_DB_PORT}/{database}',
|
||||
echo=True)
|
||||
self.Session = sessionmaker(bind=self.db_engine)
|
||||
|
||||
def create_knowledge_document(self, document:KnowledgeDocumentEntity):
|
||||
session = self.Session()
|
||||
knowledge_document = KnowledgeDocumentEntity(
|
||||
doc_name=document.doc_name,
|
||||
doc_type=document.doc_type,
|
||||
space=document.space,
|
||||
chunk_size=0.0,
|
||||
status=document.status,
|
||||
last_sync=document.last_sync,
|
||||
content=document.content or "",
|
||||
vector_ids=document.vector_ids,
|
||||
gmt_created=datetime.now(),
|
||||
gmt_modified=datetime.now()
|
||||
)
|
||||
session.add(knowledge_document)
|
||||
session.commit()
|
||||
|
||||
session.close()
|
||||
|
||||
def get_knowledge_documents(self, query, page=1, page_size=20):
|
||||
session = self.Session()
|
||||
knowledge_documents = session.query(KnowledgeDocumentEntity)
|
||||
if query.id is not None:
|
||||
knowledge_documents = knowledge_documents.filter(KnowledgeDocumentEntity.id == query.id)
|
||||
if query.doc_name is not None:
|
||||
knowledge_documents = knowledge_documents.filter(KnowledgeDocumentEntity.doc_name == query.doc_name)
|
||||
if query.doc_type is not None:
|
||||
knowledge_documents = knowledge_documents.filter(KnowledgeDocumentEntity.doc_type == query.doc_type)
|
||||
if query.space is not None:
|
||||
knowledge_documents = knowledge_documents.filter(KnowledgeDocumentEntity.space == query.space)
|
||||
if query.status is not None:
|
||||
knowledge_documents = knowledge_documents.filter(KnowledgeDocumentEntity.status == query.status)
|
||||
|
||||
knowledge_documents = knowledge_documents.order_by(KnowledgeDocumentEntity.id.desc())
|
||||
knowledge_documents = knowledge_documents.offset((page - 1) * page_size).limit(page_size)
|
||||
result = knowledge_documents.all()
|
||||
return result
|
||||
|
||||
def update_knowledge_document(self, document:KnowledgeDocumentEntity):
|
||||
session = self.Session()
|
||||
updated_space = session.merge(document)
|
||||
session.commit()
|
||||
return updated_space.id
|
||||
|
||||
def delete_knowledge_document(self, document_id:int):
|
||||
cursor = self.conn.cursor()
|
||||
query = "DELETE FROM knowledge_document WHERE id = %s"
|
||||
cursor.execute(query, (document_id,))
|
||||
self.conn.commit()
|
||||
cursor.close()
|
173
pilot/server/knowledge/knowledge_service.py
Normal file
173
pilot/server/knowledge/knowledge_service.py
Normal file
@ -0,0 +1,173 @@
|
||||
import threading
|
||||
from datetime import datetime
|
||||
|
||||
from pilot.configs.config import Config
|
||||
from pilot.configs.model_config import LLM_MODEL_CONFIG
|
||||
from pilot.embedding_engine.knowledge_embedding import KnowledgeEmbedding
|
||||
from pilot.logs import logger
|
||||
from pilot.server.knowledge.document_chunk_dao import DocumentChunkEntity, DocumentChunkDao
|
||||
from pilot.server.knowledge.knowledge_document_dao import (
|
||||
KnowledgeDocumentDao,
|
||||
KnowledgeDocumentEntity,
|
||||
)
|
||||
from pilot.server.knowledge.knowledge_space_dao import KnowledgeSpaceDao, KnowledgeSpaceEntity
|
||||
from pilot.server.knowledge.request.knowledge_request import (
|
||||
KnowledgeSpaceRequest,
|
||||
KnowledgeDocumentRequest, DocumentQueryRequest, ChunkQueryRequest,
|
||||
)
|
||||
from enum import Enum
|
||||
|
||||
|
||||
knowledge_space_dao = KnowledgeSpaceDao()
|
||||
knowledge_document_dao = KnowledgeDocumentDao()
|
||||
document_chunk_dao = DocumentChunkDao()
|
||||
|
||||
CFG=Config()
|
||||
|
||||
class SyncStatus(Enum):
|
||||
TODO = "TODO"
|
||||
FAILED = "FAILED"
|
||||
RUNNING = "RUNNING"
|
||||
FINISHED = "FINISHED"
|
||||
|
||||
|
||||
# @singleton
|
||||
class KnowledgeService:
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
"""create knowledge space"""
|
||||
|
||||
def create_knowledge_space(self, request: KnowledgeSpaceRequest):
|
||||
query = KnowledgeSpaceEntity(
|
||||
name=request.name,
|
||||
)
|
||||
spaces = knowledge_space_dao.get_knowledge_space(query)
|
||||
if len(spaces) > 0:
|
||||
raise Exception(f"space name:{request.name} have already named")
|
||||
knowledge_space_dao.create_knowledge_space(request)
|
||||
return True
|
||||
|
||||
"""create knowledge document"""
|
||||
|
||||
def create_knowledge_document(self, space, request: KnowledgeDocumentRequest):
|
||||
query = KnowledgeDocumentEntity(
|
||||
doc_name=request.doc_name,
|
||||
space=space
|
||||
)
|
||||
documents = knowledge_document_dao.get_knowledge_documents(query)
|
||||
if len(documents) > 0:
|
||||
raise Exception(f"document name:{request.doc_name} have already named")
|
||||
document = KnowledgeDocumentEntity(
|
||||
doc_name=request.doc_name,
|
||||
doc_type=request.doc_type,
|
||||
space=space,
|
||||
chunk_size=0,
|
||||
status=SyncStatus.TODO.name,
|
||||
last_sync=datetime.now(),
|
||||
content="",
|
||||
)
|
||||
knowledge_document_dao.create_knowledge_document(document)
|
||||
return True
|
||||
|
||||
"""get knowledge space"""
|
||||
|
||||
def get_knowledge_space(self, request:KnowledgeSpaceRequest):
|
||||
query = KnowledgeSpaceEntity(
|
||||
name=request.name,
|
||||
vector_type=request.vector_type,
|
||||
owner=request.owner
|
||||
)
|
||||
return knowledge_space_dao.get_knowledge_space(query)
|
||||
|
||||
"""get knowledge get_knowledge_documents"""
|
||||
|
||||
def get_knowledge_documents(self, space, request:DocumentQueryRequest):
|
||||
query = KnowledgeDocumentEntity(
|
||||
doc_name=request.doc_name,
|
||||
doc_type=request.doc_type,
|
||||
space=space,
|
||||
status=request.status,
|
||||
)
|
||||
return knowledge_document_dao.get_knowledge_documents(query, page=request.page, page_size=request.page_size)
|
||||
|
||||
"""sync knowledge document chunk into vector store"""
|
||||
def sync_knowledge_document(self, space_name, doc_ids):
|
||||
for doc_id in doc_ids:
|
||||
query = KnowledgeDocumentEntity(
|
||||
id=doc_id,
|
||||
space=space_name,
|
||||
)
|
||||
doc = knowledge_document_dao.get_knowledge_documents(query)[0]
|
||||
client = KnowledgeEmbedding(file_path=doc.doc_name,
|
||||
file_type="url",
|
||||
model_name=LLM_MODEL_CONFIG[CFG.EMBEDDING_MODEL],
|
||||
vector_store_config={
|
||||
"vector_store_name": space_name,
|
||||
})
|
||||
chunk_docs = client.read()
|
||||
# update document status
|
||||
doc.status = SyncStatus.RUNNING.name
|
||||
doc.chunk_size = len(chunk_docs)
|
||||
doc.gmt_modified = datetime.now()
|
||||
knowledge_document_dao.update_knowledge_document(doc)
|
||||
# async doc embeddings
|
||||
thread = threading.Thread(target=self.async_doc_embedding(client, chunk_docs, doc))
|
||||
thread.start()
|
||||
#save chunk details
|
||||
chunk_entities = [
|
||||
DocumentChunkEntity(
|
||||
doc_name=doc.doc_name,
|
||||
doc_type=doc.doc_type,
|
||||
document_id=doc.id,
|
||||
content=chunk_doc.page_content,
|
||||
meta_info=str(chunk_doc.metadata),
|
||||
gmt_created=datetime.now(),
|
||||
gmt_modified=datetime.now()
|
||||
)
|
||||
for chunk_doc in chunk_docs]
|
||||
document_chunk_dao.create_documents_chunks(chunk_entities)
|
||||
#update document status
|
||||
# doc.status = SyncStatus.RUNNING.name
|
||||
# doc.chunk_size = len(chunk_docs)
|
||||
# doc.gmt_modified = datetime.now()
|
||||
# knowledge_document_dao.update_knowledge_document(doc)
|
||||
|
||||
return True
|
||||
|
||||
"""update knowledge space"""
|
||||
|
||||
def update_knowledge_space(
|
||||
self, space_id: int, space_request: KnowledgeSpaceRequest
|
||||
):
|
||||
knowledge_space_dao.update_knowledge_space(space_id, space_request)
|
||||
|
||||
"""delete knowledge space"""
|
||||
|
||||
def delete_knowledge_space(self, space_id: int):
|
||||
return knowledge_space_dao.delete_knowledge_space(space_id)
|
||||
|
||||
"""get document chunks"""
|
||||
def get_document_chunks(self, request:ChunkQueryRequest):
|
||||
query = DocumentChunkEntity(
|
||||
id=request.id,
|
||||
document_id=request.document_id,
|
||||
doc_name=request.doc_name,
|
||||
doc_type=request.doc_type
|
||||
)
|
||||
return document_chunk_dao.get_document_chunks(query, page=request.page, page_size=request.page_size)
|
||||
|
||||
def async_doc_embedding(self, client, chunk_docs, doc):
|
||||
logger.info(f"async_doc_embedding, doc:{doc.doc_name}, chunk_size:{len(chunk_docs)}, begin embedding to vector store-{CFG.VECTOR_STORE_TYPE}")
|
||||
try:
|
||||
vector_ids = client.knowledge_embedding_batch(chunk_docs)
|
||||
doc.status = SyncStatus.FINISHED.name
|
||||
doc.content = "embedding success"
|
||||
doc.vector_ids = ",".join(vector_ids)
|
||||
except Exception as e:
|
||||
doc.status = SyncStatus.FAILED.name
|
||||
doc.content = str(e)
|
||||
|
||||
return knowledge_document_dao.update_knowledge_document(doc)
|
||||
|
||||
|
82
pilot/server/knowledge/knowledge_space_dao.py
Normal file
82
pilot/server/knowledge/knowledge_space_dao.py
Normal file
@ -0,0 +1,82 @@
|
||||
from datetime import datetime
|
||||
|
||||
from sqlalchemy import Column, Integer, String, DateTime, create_engine
|
||||
from sqlalchemy.ext.declarative import declarative_base
|
||||
|
||||
from pilot.configs.config import Config
|
||||
|
||||
from pilot.server.knowledge.request.knowledge_request import KnowledgeSpaceRequest
|
||||
from sqlalchemy.orm import sessionmaker
|
||||
|
||||
CFG = Config()
|
||||
Base = declarative_base()
|
||||
class KnowledgeSpaceEntity(Base):
|
||||
__tablename__ = 'knowledge_space'
|
||||
id = Column(Integer, primary_key=True)
|
||||
name = Column(String(100))
|
||||
vector_type = Column(String(100))
|
||||
desc = Column(String(100))
|
||||
owner = Column(String(100))
|
||||
gmt_created = Column(DateTime)
|
||||
gmt_modified = Column(DateTime)
|
||||
|
||||
def __repr__(self):
|
||||
return f"KnowledgeSpaceEntity(id={self.id}, name='{self.name}', vector_type='{self.vector_type}', desc='{self.desc}', owner='{self.owner}', gmt_created='{self.gmt_created}', gmt_modified='{self.gmt_modified}')"
|
||||
|
||||
|
||||
class KnowledgeSpaceDao:
|
||||
def __init__(self):
|
||||
database = "knowledge_management"
|
||||
self.db_engine = create_engine(f'mysql+pymysql://{CFG.LOCAL_DB_USER}:{CFG.LOCAL_DB_PASSWORD}@{CFG.LOCAL_DB_HOST}:{CFG.LOCAL_DB_PORT}/{database}', echo=True)
|
||||
self.Session = sessionmaker(bind=self.db_engine)
|
||||
|
||||
def create_knowledge_space(self, space:KnowledgeSpaceRequest):
|
||||
session = self.Session()
|
||||
knowledge_space = KnowledgeSpaceEntity(
|
||||
name=space.name,
|
||||
vector_type=space.vector_type,
|
||||
desc=space.desc,
|
||||
owner=space.owner,
|
||||
gmt_created=datetime.now(),
|
||||
gmt_modified=datetime.now()
|
||||
)
|
||||
session.add(knowledge_space)
|
||||
session.commit()
|
||||
|
||||
session.close()
|
||||
|
||||
def get_knowledge_space(self, query:KnowledgeSpaceEntity):
|
||||
session = self.Session()
|
||||
knowledge_spaces = session.query(KnowledgeSpaceEntity)
|
||||
if query.id is not None:
|
||||
knowledge_spaces = knowledge_spaces.filter(KnowledgeSpaceEntity.id == query.id)
|
||||
if query.name is not None:
|
||||
knowledge_spaces = knowledge_spaces.filter(KnowledgeSpaceEntity.name == query.name)
|
||||
if query.vector_type is not None:
|
||||
knowledge_spaces = knowledge_spaces.filter(KnowledgeSpaceEntity.vector_type == query.vector_type)
|
||||
if query.desc is not None:
|
||||
knowledge_spaces = knowledge_spaces.filter(KnowledgeSpaceEntity.desc == query.desc)
|
||||
if query.owner is not None:
|
||||
knowledge_spaces = knowledge_spaces.filter(KnowledgeSpaceEntity.owner == query.owner)
|
||||
if query.gmt_created is not None:
|
||||
knowledge_spaces = knowledge_spaces.filter(KnowledgeSpaceEntity.gmt_created == query.gmt_created)
|
||||
if query.gmt_modified is not None:
|
||||
knowledge_spaces = knowledge_spaces.filter(KnowledgeSpaceEntity.gmt_modified == query.gmt_modified)
|
||||
|
||||
knowledge_spaces = knowledge_spaces.order_by(KnowledgeSpaceEntity.gmt_created.desc())
|
||||
result = knowledge_spaces.all()
|
||||
return result
|
||||
|
||||
def update_knowledge_space(self, space_id:int, space:KnowledgeSpaceEntity):
|
||||
cursor = self.conn.cursor()
|
||||
query = "UPDATE knowledge_space SET name = %s, vector_type = %s, desc = %s, owner = %s WHERE id = %s"
|
||||
cursor.execute(query, (space.name, space.vector_type, space.desc, space.owner, space_id))
|
||||
self.conn.commit()
|
||||
cursor.close()
|
||||
|
||||
def delete_knowledge_space(self, space_id:int):
|
||||
cursor = self.conn.cursor()
|
||||
query = "DELETE FROM knowledge_space WHERE id = %s"
|
||||
cursor.execute(query, (space_id,))
|
||||
self.conn.commit()
|
||||
cursor.close()
|
74
pilot/server/knowledge/request/knowledge_request.py
Normal file
74
pilot/server/knowledge/request/knowledge_request.py
Normal file
@ -0,0 +1,74 @@
|
||||
from typing import List
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class KnowledgeQueryRequest(BaseModel):
|
||||
"""query: knowledge query"""
|
||||
|
||||
query: str
|
||||
"""top_k: return topK documents"""
|
||||
top_k: int
|
||||
|
||||
|
||||
class KnowledgeSpaceRequest(BaseModel):
|
||||
"""name: knowledge space name"""
|
||||
|
||||
name: str = None
|
||||
"""vector_type: vector type"""
|
||||
vector_type: str = None
|
||||
"""desc: description"""
|
||||
desc: str = None
|
||||
"""owner: owner"""
|
||||
owner: str = None
|
||||
|
||||
|
||||
class KnowledgeDocumentRequest(BaseModel):
|
||||
"""doc_name: doc path"""
|
||||
|
||||
doc_name: str
|
||||
"""doc_type: doc type"""
|
||||
doc_type: str
|
||||
"""text_chunk_size: text_chunk_size"""
|
||||
# text_chunk_size: int
|
||||
|
||||
class DocumentQueryRequest(BaseModel):
|
||||
"""doc_name: doc path"""
|
||||
doc_name: str = None
|
||||
"""doc_type: doc type"""
|
||||
doc_type: str= None
|
||||
"""status: status"""
|
||||
status: str= None
|
||||
"""page: page"""
|
||||
page: int = 1
|
||||
"""page_size: page size"""
|
||||
page_size: int = 20
|
||||
|
||||
|
||||
class DocumentSyncRequest(BaseModel):
|
||||
"""doc_ids: doc ids"""
|
||||
doc_ids: List
|
||||
|
||||
class ChunkQueryRequest(BaseModel):
|
||||
"""id: id"""
|
||||
id: int = None
|
||||
"""document_id: doc id"""
|
||||
document_id: int = None
|
||||
"""doc_name: doc path"""
|
||||
doc_name: str = None
|
||||
"""doc_type: doc type"""
|
||||
doc_type: str = None
|
||||
"""page: page"""
|
||||
page: int = 1
|
||||
"""page_size: page size"""
|
||||
page_size: int = 20
|
||||
|
||||
|
||||
class KnowledgeQueryResponse:
|
||||
"""source: knowledge reference source"""
|
||||
|
||||
source: str
|
||||
"""score: knowledge vector query similarity score"""
|
||||
score: float = 0.0
|
||||
"""text: raw text info"""
|
||||
text: str
|
@ -9,6 +9,7 @@ import sys
|
||||
import uvicorn
|
||||
from fastapi import BackgroundTasks, FastAPI, Request
|
||||
from fastapi.responses import StreamingResponse
|
||||
from fastapi.middleware.cors import CORSMiddleware
|
||||
from pydantic import BaseModel
|
||||
|
||||
global_counter = 0
|
||||
@ -22,10 +23,12 @@ from pilot.configs.model_config import *
|
||||
from pilot.model.llm_out.vicuna_base_llm import get_embeddings
|
||||
from pilot.model.loader import ModelLoader
|
||||
from pilot.server.chat_adapter import get_llm_chat_adapter
|
||||
from knowledge.knowledge_controller import router
|
||||
|
||||
CFG = Config()
|
||||
|
||||
|
||||
|
||||
class ModelWorker:
|
||||
def __init__(self, model_path, model_name, device, num_gpus=1):
|
||||
if model_path.endswith("/"):
|
||||
@ -103,7 +106,21 @@ worker = ModelWorker(
|
||||
)
|
||||
|
||||
app = FastAPI()
|
||||
app.include_router(router)
|
||||
|
||||
origins = [
|
||||
"http://localhost",
|
||||
"http://localhost:8000",
|
||||
"http://localhost:3000",
|
||||
]
|
||||
|
||||
app.add_middleware(
|
||||
CORSMiddleware,
|
||||
allow_origins=origins,
|
||||
allow_credentials=True,
|
||||
allow_methods=["*"],
|
||||
allow_headers=["*"],
|
||||
)
|
||||
|
||||
class PromptRequest(BaseModel):
|
||||
prompt: str
|
||||
|
@ -32,5 +32,10 @@ class ChromaStore(VectorStoreBase):
|
||||
logger.info("ChromaStore load document")
|
||||
texts = [doc.page_content for doc in documents]
|
||||
metadatas = [doc.metadata for doc in documents]
|
||||
self.vector_store_client.add_texts(texts=texts, metadatas=metadatas)
|
||||
ids = self.vector_store_client.add_texts(texts=texts, metadatas=metadatas)
|
||||
self.vector_store_client.persist()
|
||||
return ids
|
||||
|
||||
def delete_by_ids(self, ids):
|
||||
collection = self.vector_store_client._collection
|
||||
collection.delete(ids=ids)
|
||||
|
@ -16,7 +16,7 @@ class VectorStoreConnector:
|
||||
|
||||
def load_document(self, docs):
|
||||
"""load document in vector database."""
|
||||
self.client.load_document(docs)
|
||||
return self.client.load_document(docs)
|
||||
|
||||
def similar_search(self, docs, topk):
|
||||
"""similar search in vector database."""
|
||||
@ -25,3 +25,6 @@ class VectorStoreConnector:
|
||||
def vector_name_exists(self):
|
||||
"""is vector store name exist."""
|
||||
return self.client.vector_name_exists()
|
||||
|
||||
def delete_by_ids(self, ids):
|
||||
self.client.delete_by_ids(ids=ids)
|
||||
|
Loading…
Reference in New Issue
Block a user