feat: knowledge management backend api

1.create knowledge space
2.list knowledge space
3.create knowledge document
4.list knowledge document
5.save document chunks
6.sync embedding document
This commit is contained in:
aries_ckt 2023-06-26 15:24:25 +08:00
parent 364f251a12
commit db28894443
13 changed files with 648 additions and 12 deletions

View File

@ -48,9 +48,10 @@ class KnowledgeEmbedding:
def knowledge_embedding_batch(self, docs):
# docs = self.knowledge_embedding_client.read_batch()
self.knowledge_embedding_client.index_to_store(docs)
return self.knowledge_embedding_client.index_to_store(docs)
def read(self):
self.knowledge_embedding_client = self.init_knowledge_embedding()
return self.knowledge_embedding_client.read_batch()
def init_knowledge_embedding(self):
@ -66,7 +67,7 @@ class KnowledgeEmbedding:
embedding = knowledge_class(
self.file_path,
vector_store_config=self.vector_store_config,
**knowledge_args,
**knowledge_args
)
return embedding
raise ValueError(f"Unsupported knowledge file type '{extension}'")

View File

@ -59,7 +59,7 @@ class SourceEmbedding(ABC):
@register
def index_to_store(self, docs):
"""index to vector store"""
self.vector_client.load_document(docs)
return self.vector_client.load_document(docs)
@register
def similar_search(self, doc, topk):

View File

@ -42,7 +42,7 @@ class ChatUrlKnowledge(BaseChat):
"vector_store_path": KNOWLEDGE_UPLOAD_ROOT_PATH,
}
self.knowledge_embedding_client = KnowledgeEmbedding(
model_name=LLM_MODEL_CONFIG["text2vec"],
model_name=LLM_MODEL_CONFIG[CFG.EMBEDDING_MODEL],
vector_store_config=vector_store_config,
file_type="url",
file_path=url,

View File

@ -6,21 +6,21 @@ T = TypeVar('T')
class Result(Generic[T], BaseModel):
success: bool
err_code: str
err_msg: str
data: List[T]
err_code: str = None
err_msg: str = None
data: List[T] = None
@classmethod
def succ(cls, data: List[T]):
return Result(True, None, None, data)
return Result(success=True, err_code=None, err_msg=None, data=data)
@classmethod
def faild(cls, msg):
return Result(True, "E000X", msg, None)
return Result(success=False, err_code="E000X", err_msg=msg, data=None)
@classmethod
def faild(cls, code, msg):
return Result(True, code, msg, None)
return Result(success=False, err_code=code, err_msg=msg, data=None)
class ConversationVo(BaseModel):

View File

@ -0,0 +1,83 @@
from datetime import datetime
from typing import List
from sqlalchemy import Column, String, DateTime, Integer, Text, create_engine
from sqlalchemy.orm import declarative_base, sessionmaker
from pilot.configs.config import Config
CFG = Config()
Base = declarative_base()
class DocumentChunkEntity(Base):
__tablename__ = 'document_chunk'
id = Column(Integer, primary_key=True)
document_id = Column(Integer)
doc_name = Column(String(100))
doc_type = Column(String(100))
content = Column(Text)
meta_info = Column(String(500))
gmt_created = Column(DateTime)
gmt_modified = Column(DateTime)
def __repr__(self):
return f"DocumentChunkEntity(id={self.id}, doc_name='{self.doc_name}', doc_type='{self.doc_type}', document_id='{self.document_id}', content='{self.content}', meta_info='{self.meta_info}', gmt_created='{self.gmt_created}', gmt_modified='{self.gmt_modified}')"
class DocumentChunkDao:
def __init__(self):
database = "knowledge_management"
self.db_engine = create_engine(
f'mysql+pymysql://{CFG.LOCAL_DB_USER}:{CFG.LOCAL_DB_PASSWORD}@{CFG.LOCAL_DB_HOST}:{CFG.LOCAL_DB_PORT}/{database}',
echo=True)
self.Session = sessionmaker(bind=self.db_engine)
def create_documents_chunks(self, documents:List):
session = self.Session()
docs = [
DocumentChunkEntity(
doc_name=document.doc_name,
doc_type=document.doc_type,
document_id=document.document_id,
content=document.content or "",
meta_info=document.meta_info or "",
gmt_created=datetime.now(),
gmt_modified=datetime.now()
)
for document in documents]
session.add_all(docs)
session.commit()
session.close()
def get_document_chunks(self, query:DocumentChunkEntity, page=1, page_size=20):
session = self.Session()
document_chunks = session.query(DocumentChunkEntity)
if query.id is not None:
document_chunks = document_chunks.filter(DocumentChunkEntity.id == query.id)
if query.document_id is not None:
document_chunks = document_chunks.filter(DocumentChunkEntity.document_id == query.document_id)
if query.doc_type is not None:
document_chunks = document_chunks.filter(DocumentChunkEntity.doc_type == query.doc_type)
if query.doc_name is not None:
document_chunks = document_chunks.filter(DocumentChunkEntity.doc_name == query.doc_name)
if query.meta_info is not None:
document_chunks = document_chunks.filter(DocumentChunkEntity.meta_info == query.meta_info)
document_chunks = document_chunks.order_by(DocumentChunkEntity.id.desc())
document_chunks = document_chunks.offset((page - 1) * page_size).limit(page_size)
result = document_chunks.all()
return result
# def update_knowledge_document(self, document:KnowledgeDocumentEntity):
# session = self.Session()
# updated_space = session.merge(document)
# session.commit()
# return updated_space.id
# def delete_knowledge_document(self, document_id:int):
# cursor = self.conn.cursor()
# query = "DELETE FROM knowledge_document WHERE id = %s"
# cursor.execute(query, (document_id,))
# self.conn.commit()
# cursor.close()

View File

@ -0,0 +1,111 @@
import json
import os
import sys
from typing import List
from fastapi import APIRouter
from langchain.embeddings import HuggingFaceEmbeddings
ROOT_PATH = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
sys.path.append(ROOT_PATH)
from pilot.configs.config import Config
from pilot.configs.model_config import LLM_MODEL_CONFIG
from pilot.server.api_v1.api_view_model import Result
from pilot.embedding_engine.knowledge_embedding import KnowledgeEmbedding
from pilot.server.knowledge.knowledge_service import KnowledgeService
from pilot.server.knowledge.request.knowledge_request import (
KnowledgeQueryRequest,
KnowledgeQueryResponse, KnowledgeDocumentRequest, DocumentSyncRequest, ChunkQueryRequest, DocumentQueryRequest,
)
from pilot.server.knowledge.request.knowledge_request import KnowledgeSpaceRequest
CFG = Config()
router = APIRouter()
embeddings = HuggingFaceEmbeddings(model_name=LLM_MODEL_CONFIG[CFG.EMBEDDING_MODEL])
knowledge_space_service = KnowledgeService()
@router.post("/knowledge/space/add")
def space_add(request: KnowledgeSpaceRequest):
print(f"/space/add params: {request}")
try:
knowledge_space_service.create_knowledge_space(request)
return Result.succ([])
except Exception as e:
return Result.faild(code="E000X", msg=f"space add error {e}")
@router.post("/knowledge/space/list")
def space_list(request: KnowledgeSpaceRequest):
print(f"/space/list params:")
try:
return Result.succ(knowledge_space_service.get_knowledge_space(request))
except Exception as e:
return Result.faild(code="E000X", msg=f"space list error {e}")
@router.post("/knowledge/{space_name}/document/add")
def document_add(space_name: str, request: KnowledgeDocumentRequest):
print(f"/document/add params: {space_name}, {request}")
try:
knowledge_space_service.create_knowledge_document(
space=space_name, request=request
)
return Result.succ([])
except Exception as e:
return Result.faild(code="E000X", msg=f"document add error {e}")
@router.post("/knowledge/{space_name}/document/list")
def document_list(space_name: str, query_request: DocumentQueryRequest):
print(f"/document/list params: {space_name}, {query_request}")
try:
return Result.succ(knowledge_space_service.get_knowledge_documents(
space_name,
query_request
))
except Exception as e:
return Result.faild(code="E000X", msg=f"document list error {e}")
@router.post("/knowledge/{space_name}/document/sync")
def document_sync(space_name: str, request: DocumentSyncRequest):
print(f"Received params: {space_name}, {request}")
try:
knowledge_space_service.sync_knowledge_document(
space_name=space_name, doc_ids=request.doc_ids
)
Result.succ([])
except Exception as e:
return Result.faild(code="E000X", msg=f"document sync error {e}")
@router.post("/knowledge/{space_name}/chunk/list")
def document_list(space_name: str, query_request: ChunkQueryRequest):
print(f"/document/list params: {space_name}, {query_request}")
try:
Result.succ(knowledge_space_service.get_document_chunks(
query_request
))
except Exception as e:
return Result.faild(code="E000X", msg=f"document chunk list error {e}")
@router.post("/knowledge/{vector_name}/query")
def similar_query(space_name: str, query_request: KnowledgeQueryRequest):
print(f"Received params: {space_name}, {query_request}")
client = KnowledgeEmbedding(
model_name=embeddings, vector_store_config={"vector_store_name": space_name}
)
docs = client.similar_search(query_request.query, query_request.top_k)
res = [
KnowledgeQueryResponse(text=d.page_content, source=d.metadata["source"])
for d in docs
]
return {"response": res}

View File

@ -0,0 +1,87 @@
from datetime import datetime
from sqlalchemy import Column, String, DateTime, Integer, Text, create_engine
from sqlalchemy.orm import declarative_base, sessionmaker
from pilot.configs.config import Config
CFG = Config()
Base = declarative_base()
class KnowledgeDocumentEntity(Base):
__tablename__ = 'knowledge_document'
id = Column(Integer, primary_key=True)
doc_name = Column(String(100))
doc_type = Column(String(100))
space = Column(String(100))
chunk_size = Column(Integer)
status = Column(String(100))
last_sync = Column(String(100))
content = Column(Text)
vector_ids = Column(Text)
gmt_created = Column(DateTime)
gmt_modified = Column(DateTime)
def __repr__(self):
return f"KnowledgeDocumentEntity(id={self.id}, doc_name='{self.doc_name}', doc_type='{self.doc_type}', chunk_size='{self.chunk_size}', status='{self.status}', last_sync='{self.last_sync}', content='{self.content}', gmt_created='{self.gmt_created}', gmt_modified='{self.gmt_modified}')"
class KnowledgeDocumentDao:
def __init__(self):
database = "knowledge_management"
self.db_engine = create_engine(
f'mysql+pymysql://{CFG.LOCAL_DB_USER}:{CFG.LOCAL_DB_PASSWORD}@{CFG.LOCAL_DB_HOST}:{CFG.LOCAL_DB_PORT}/{database}',
echo=True)
self.Session = sessionmaker(bind=self.db_engine)
def create_knowledge_document(self, document:KnowledgeDocumentEntity):
session = self.Session()
knowledge_document = KnowledgeDocumentEntity(
doc_name=document.doc_name,
doc_type=document.doc_type,
space=document.space,
chunk_size=0.0,
status=document.status,
last_sync=document.last_sync,
content=document.content or "",
vector_ids=document.vector_ids,
gmt_created=datetime.now(),
gmt_modified=datetime.now()
)
session.add(knowledge_document)
session.commit()
session.close()
def get_knowledge_documents(self, query, page=1, page_size=20):
session = self.Session()
knowledge_documents = session.query(KnowledgeDocumentEntity)
if query.id is not None:
knowledge_documents = knowledge_documents.filter(KnowledgeDocumentEntity.id == query.id)
if query.doc_name is not None:
knowledge_documents = knowledge_documents.filter(KnowledgeDocumentEntity.doc_name == query.doc_name)
if query.doc_type is not None:
knowledge_documents = knowledge_documents.filter(KnowledgeDocumentEntity.doc_type == query.doc_type)
if query.space is not None:
knowledge_documents = knowledge_documents.filter(KnowledgeDocumentEntity.space == query.space)
if query.status is not None:
knowledge_documents = knowledge_documents.filter(KnowledgeDocumentEntity.status == query.status)
knowledge_documents = knowledge_documents.order_by(KnowledgeDocumentEntity.id.desc())
knowledge_documents = knowledge_documents.offset((page - 1) * page_size).limit(page_size)
result = knowledge_documents.all()
return result
def update_knowledge_document(self, document:KnowledgeDocumentEntity):
session = self.Session()
updated_space = session.merge(document)
session.commit()
return updated_space.id
def delete_knowledge_document(self, document_id:int):
cursor = self.conn.cursor()
query = "DELETE FROM knowledge_document WHERE id = %s"
cursor.execute(query, (document_id,))
self.conn.commit()
cursor.close()

View File

@ -0,0 +1,173 @@
import threading
from datetime import datetime
from pilot.configs.config import Config
from pilot.configs.model_config import LLM_MODEL_CONFIG
from pilot.embedding_engine.knowledge_embedding import KnowledgeEmbedding
from pilot.logs import logger
from pilot.server.knowledge.document_chunk_dao import DocumentChunkEntity, DocumentChunkDao
from pilot.server.knowledge.knowledge_document_dao import (
KnowledgeDocumentDao,
KnowledgeDocumentEntity,
)
from pilot.server.knowledge.knowledge_space_dao import KnowledgeSpaceDao, KnowledgeSpaceEntity
from pilot.server.knowledge.request.knowledge_request import (
KnowledgeSpaceRequest,
KnowledgeDocumentRequest, DocumentQueryRequest, ChunkQueryRequest,
)
from enum import Enum
knowledge_space_dao = KnowledgeSpaceDao()
knowledge_document_dao = KnowledgeDocumentDao()
document_chunk_dao = DocumentChunkDao()
CFG=Config()
class SyncStatus(Enum):
TODO = "TODO"
FAILED = "FAILED"
RUNNING = "RUNNING"
FINISHED = "FINISHED"
# @singleton
class KnowledgeService:
def __init__(self):
pass
"""create knowledge space"""
def create_knowledge_space(self, request: KnowledgeSpaceRequest):
query = KnowledgeSpaceEntity(
name=request.name,
)
spaces = knowledge_space_dao.get_knowledge_space(query)
if len(spaces) > 0:
raise Exception(f"space name:{request.name} have already named")
knowledge_space_dao.create_knowledge_space(request)
return True
"""create knowledge document"""
def create_knowledge_document(self, space, request: KnowledgeDocumentRequest):
query = KnowledgeDocumentEntity(
doc_name=request.doc_name,
space=space
)
documents = knowledge_document_dao.get_knowledge_documents(query)
if len(documents) > 0:
raise Exception(f"document name:{request.doc_name} have already named")
document = KnowledgeDocumentEntity(
doc_name=request.doc_name,
doc_type=request.doc_type,
space=space,
chunk_size=0,
status=SyncStatus.TODO.name,
last_sync=datetime.now(),
content="",
)
knowledge_document_dao.create_knowledge_document(document)
return True
"""get knowledge space"""
def get_knowledge_space(self, request:KnowledgeSpaceRequest):
query = KnowledgeSpaceEntity(
name=request.name,
vector_type=request.vector_type,
owner=request.owner
)
return knowledge_space_dao.get_knowledge_space(query)
"""get knowledge get_knowledge_documents"""
def get_knowledge_documents(self, space, request:DocumentQueryRequest):
query = KnowledgeDocumentEntity(
doc_name=request.doc_name,
doc_type=request.doc_type,
space=space,
status=request.status,
)
return knowledge_document_dao.get_knowledge_documents(query, page=request.page, page_size=request.page_size)
"""sync knowledge document chunk into vector store"""
def sync_knowledge_document(self, space_name, doc_ids):
for doc_id in doc_ids:
query = KnowledgeDocumentEntity(
id=doc_id,
space=space_name,
)
doc = knowledge_document_dao.get_knowledge_documents(query)[0]
client = KnowledgeEmbedding(file_path=doc.doc_name,
file_type="url",
model_name=LLM_MODEL_CONFIG[CFG.EMBEDDING_MODEL],
vector_store_config={
"vector_store_name": space_name,
})
chunk_docs = client.read()
# update document status
doc.status = SyncStatus.RUNNING.name
doc.chunk_size = len(chunk_docs)
doc.gmt_modified = datetime.now()
knowledge_document_dao.update_knowledge_document(doc)
# async doc embeddings
thread = threading.Thread(target=self.async_doc_embedding(client, chunk_docs, doc))
thread.start()
#save chunk details
chunk_entities = [
DocumentChunkEntity(
doc_name=doc.doc_name,
doc_type=doc.doc_type,
document_id=doc.id,
content=chunk_doc.page_content,
meta_info=str(chunk_doc.metadata),
gmt_created=datetime.now(),
gmt_modified=datetime.now()
)
for chunk_doc in chunk_docs]
document_chunk_dao.create_documents_chunks(chunk_entities)
#update document status
# doc.status = SyncStatus.RUNNING.name
# doc.chunk_size = len(chunk_docs)
# doc.gmt_modified = datetime.now()
# knowledge_document_dao.update_knowledge_document(doc)
return True
"""update knowledge space"""
def update_knowledge_space(
self, space_id: int, space_request: KnowledgeSpaceRequest
):
knowledge_space_dao.update_knowledge_space(space_id, space_request)
"""delete knowledge space"""
def delete_knowledge_space(self, space_id: int):
return knowledge_space_dao.delete_knowledge_space(space_id)
"""get document chunks"""
def get_document_chunks(self, request:ChunkQueryRequest):
query = DocumentChunkEntity(
id=request.id,
document_id=request.document_id,
doc_name=request.doc_name,
doc_type=request.doc_type
)
return document_chunk_dao.get_document_chunks(query, page=request.page, page_size=request.page_size)
def async_doc_embedding(self, client, chunk_docs, doc):
logger.info(f"async_doc_embedding, doc:{doc.doc_name}, chunk_size:{len(chunk_docs)}, begin embedding to vector store-{CFG.VECTOR_STORE_TYPE}")
try:
vector_ids = client.knowledge_embedding_batch(chunk_docs)
doc.status = SyncStatus.FINISHED.name
doc.content = "embedding success"
doc.vector_ids = ",".join(vector_ids)
except Exception as e:
doc.status = SyncStatus.FAILED.name
doc.content = str(e)
return knowledge_document_dao.update_knowledge_document(doc)

View File

@ -0,0 +1,82 @@
from datetime import datetime
from sqlalchemy import Column, Integer, String, DateTime, create_engine
from sqlalchemy.ext.declarative import declarative_base
from pilot.configs.config import Config
from pilot.server.knowledge.request.knowledge_request import KnowledgeSpaceRequest
from sqlalchemy.orm import sessionmaker
CFG = Config()
Base = declarative_base()
class KnowledgeSpaceEntity(Base):
__tablename__ = 'knowledge_space'
id = Column(Integer, primary_key=True)
name = Column(String(100))
vector_type = Column(String(100))
desc = Column(String(100))
owner = Column(String(100))
gmt_created = Column(DateTime)
gmt_modified = Column(DateTime)
def __repr__(self):
return f"KnowledgeSpaceEntity(id={self.id}, name='{self.name}', vector_type='{self.vector_type}', desc='{self.desc}', owner='{self.owner}', gmt_created='{self.gmt_created}', gmt_modified='{self.gmt_modified}')"
class KnowledgeSpaceDao:
def __init__(self):
database = "knowledge_management"
self.db_engine = create_engine(f'mysql+pymysql://{CFG.LOCAL_DB_USER}:{CFG.LOCAL_DB_PASSWORD}@{CFG.LOCAL_DB_HOST}:{CFG.LOCAL_DB_PORT}/{database}', echo=True)
self.Session = sessionmaker(bind=self.db_engine)
def create_knowledge_space(self, space:KnowledgeSpaceRequest):
session = self.Session()
knowledge_space = KnowledgeSpaceEntity(
name=space.name,
vector_type=space.vector_type,
desc=space.desc,
owner=space.owner,
gmt_created=datetime.now(),
gmt_modified=datetime.now()
)
session.add(knowledge_space)
session.commit()
session.close()
def get_knowledge_space(self, query:KnowledgeSpaceEntity):
session = self.Session()
knowledge_spaces = session.query(KnowledgeSpaceEntity)
if query.id is not None:
knowledge_spaces = knowledge_spaces.filter(KnowledgeSpaceEntity.id == query.id)
if query.name is not None:
knowledge_spaces = knowledge_spaces.filter(KnowledgeSpaceEntity.name == query.name)
if query.vector_type is not None:
knowledge_spaces = knowledge_spaces.filter(KnowledgeSpaceEntity.vector_type == query.vector_type)
if query.desc is not None:
knowledge_spaces = knowledge_spaces.filter(KnowledgeSpaceEntity.desc == query.desc)
if query.owner is not None:
knowledge_spaces = knowledge_spaces.filter(KnowledgeSpaceEntity.owner == query.owner)
if query.gmt_created is not None:
knowledge_spaces = knowledge_spaces.filter(KnowledgeSpaceEntity.gmt_created == query.gmt_created)
if query.gmt_modified is not None:
knowledge_spaces = knowledge_spaces.filter(KnowledgeSpaceEntity.gmt_modified == query.gmt_modified)
knowledge_spaces = knowledge_spaces.order_by(KnowledgeSpaceEntity.gmt_created.desc())
result = knowledge_spaces.all()
return result
def update_knowledge_space(self, space_id:int, space:KnowledgeSpaceEntity):
cursor = self.conn.cursor()
query = "UPDATE knowledge_space SET name = %s, vector_type = %s, desc = %s, owner = %s WHERE id = %s"
cursor.execute(query, (space.name, space.vector_type, space.desc, space.owner, space_id))
self.conn.commit()
cursor.close()
def delete_knowledge_space(self, space_id:int):
cursor = self.conn.cursor()
query = "DELETE FROM knowledge_space WHERE id = %s"
cursor.execute(query, (space_id,))
self.conn.commit()
cursor.close()

View File

@ -0,0 +1,74 @@
from typing import List
from pydantic import BaseModel
class KnowledgeQueryRequest(BaseModel):
"""query: knowledge query"""
query: str
"""top_k: return topK documents"""
top_k: int
class KnowledgeSpaceRequest(BaseModel):
"""name: knowledge space name"""
name: str = None
"""vector_type: vector type"""
vector_type: str = None
"""desc: description"""
desc: str = None
"""owner: owner"""
owner: str = None
class KnowledgeDocumentRequest(BaseModel):
"""doc_name: doc path"""
doc_name: str
"""doc_type: doc type"""
doc_type: str
"""text_chunk_size: text_chunk_size"""
# text_chunk_size: int
class DocumentQueryRequest(BaseModel):
"""doc_name: doc path"""
doc_name: str = None
"""doc_type: doc type"""
doc_type: str= None
"""status: status"""
status: str= None
"""page: page"""
page: int = 1
"""page_size: page size"""
page_size: int = 20
class DocumentSyncRequest(BaseModel):
"""doc_ids: doc ids"""
doc_ids: List
class ChunkQueryRequest(BaseModel):
"""id: id"""
id: int = None
"""document_id: doc id"""
document_id: int = None
"""doc_name: doc path"""
doc_name: str = None
"""doc_type: doc type"""
doc_type: str = None
"""page: page"""
page: int = 1
"""page_size: page size"""
page_size: int = 20
class KnowledgeQueryResponse:
"""source: knowledge reference source"""
source: str
"""score: knowledge vector query similarity score"""
score: float = 0.0
"""text: raw text info"""
text: str

View File

@ -9,6 +9,7 @@ import sys
import uvicorn
from fastapi import BackgroundTasks, FastAPI, Request
from fastapi.responses import StreamingResponse
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
global_counter = 0
@ -22,10 +23,12 @@ from pilot.configs.model_config import *
from pilot.model.llm_out.vicuna_base_llm import get_embeddings
from pilot.model.loader import ModelLoader
from pilot.server.chat_adapter import get_llm_chat_adapter
from knowledge.knowledge_controller import router
CFG = Config()
class ModelWorker:
def __init__(self, model_path, model_name, device, num_gpus=1):
if model_path.endswith("/"):
@ -103,7 +106,21 @@ worker = ModelWorker(
)
app = FastAPI()
app.include_router(router)
origins = [
"http://localhost",
"http://localhost:8000",
"http://localhost:3000",
]
app.add_middleware(
CORSMiddleware,
allow_origins=origins,
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
class PromptRequest(BaseModel):
prompt: str

View File

@ -32,5 +32,10 @@ class ChromaStore(VectorStoreBase):
logger.info("ChromaStore load document")
texts = [doc.page_content for doc in documents]
metadatas = [doc.metadata for doc in documents]
self.vector_store_client.add_texts(texts=texts, metadatas=metadatas)
ids = self.vector_store_client.add_texts(texts=texts, metadatas=metadatas)
self.vector_store_client.persist()
return ids
def delete_by_ids(self, ids):
collection = self.vector_store_client._collection
collection.delete(ids=ids)

View File

@ -16,7 +16,7 @@ class VectorStoreConnector:
def load_document(self, docs):
"""load document in vector database."""
self.client.load_document(docs)
return self.client.load_document(docs)
def similar_search(self, docs, topk):
"""similar search in vector database."""
@ -25,3 +25,6 @@ class VectorStoreConnector:
def vector_name_exists(self):
"""is vector store name exist."""
return self.client.vector_name_exists()
def delete_by_ids(self, ids):
self.client.delete_by_ids(ids=ids)