Merge branch 'dev' of https://github.com/csunny/DB-GPT into dev

This commit is contained in:
csunny
2023-05-08 21:07:13 +08:00
21 changed files with 147 additions and 19 deletions

View File

@@ -1,2 +1,2 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# -*- coding:utf-8 -*-

7
pilot/agent/agent.py Normal file
View File

@@ -0,0 +1,7 @@
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
class Agent:
"""Agent class for interacting with DB-GPT """
pass

View File

@@ -0,0 +1,23 @@
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
from pilot.singleton import Singleton
class AgentManager(metaclass=Singleton):
"""Agent manager for managing DB-GPT agents"""
def __init__(self) -> None:
self.agents = {} #TODO need to define
def create_agent(self):
pass
def message_agent(self):
pass
def list_agents(self):
pass
def delete_agent(self):
pass

View File

@@ -1,3 +0,0 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-

View File

@@ -1,2 +0,0 @@
#/usr/bin/env python3
# -*- coding: utf-8 -*-

12
pilot/configs/config.py Normal file
View File

@@ -0,0 +1,12 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
from auto_gpt_plugin_template import AutoGPTPluginTemplate
from pilot.singleton import Singleton
class Config(metaclass=Singleton):
"""Configuration class to store the state of bools for different scripts access"""
def __init__(self) -> None:
"""Initialize the Config class"""
pass

View File

@@ -0,0 +1,8 @@
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
"""We need to design a base class. That other connector can Write with this"""
class BaseConnection:
pass

View File

@@ -0,0 +1,7 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
class ClickHouseConnector:
"""ClickHouseConnector"""
pass

7
pilot/connections/es.py Normal file
View File

@@ -0,0 +1,7 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
class ElasticSearchConnector:
"""ElasticSearchConnector"""
pass

View File

@@ -0,0 +1,6 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
class MongoConnector:
"""MongoConnector is a class which connect to mongo and chat with LLM"""
pass

View File

@@ -4,7 +4,11 @@
import pymysql
class MySQLOperator:
"""Connect MySQL Database fetch MetaData For LLM Prompt """
"""Connect MySQL Database fetch MetaData For LLM Prompt
Args:
Usage:
"""
default_db = ["information_schema", "performance_schema", "sys", "mysql"]
def __init__(self, user, password, host="localhost", port=3306) -> None:
@@ -26,6 +30,9 @@ class MySQLOperator:
cursor.execute(_sql)
results = cursor.fetchall()
return results
def get_index(self, schema_name):
pass
def get_db_list(self):
with self.conn.cursor() as cursor:
@@ -38,5 +45,7 @@ class MySQLOperator:
dbs = [d["Database"] for d in results if d["Database"] not in self.default_db]
return dbs
def get_meta(self, schema_name):
pass

View File

@@ -0,0 +1,6 @@
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
class OracleConnector:
"""OracleConnector"""
pass

View File

@@ -0,0 +1,8 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
class PostgresConnector:
"""PostgresConnector is a class which Connector to chat with LLM"""
pass

View File

@@ -0,0 +1,7 @@
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
class RedisConnector:
"""RedisConnector"""
pass

View File

@@ -89,7 +89,7 @@ class Conversation:
def gen_sqlgen_conversation(dbname):
from pilot.connections.mysql_conn import MySQLOperator
from pilot.connections.mysql import MySQLOperator
mo = MySQLOperator(
**DB_SETTINGS
)

View File

@@ -10,7 +10,12 @@ from transformers import (
from fastchat.serve.compression import compress_module
class ModerLoader:
class ModelLoader:
"""Model loader is a class for model load
Args: model_path
"""
kwargs = {}

View File

@@ -13,7 +13,7 @@ from pilot.model.inference import generate_output, get_embeddings
from fastchat.serve.inference import load_model
from pilot.model.loader import ModerLoader
from pilot.model.loader import ModelLoader
from pilot.configs.model_config import *
model_path = LLM_MODEL_CONFIG[LLM_MODEL]
@@ -22,7 +22,7 @@ model_path = LLM_MODEL_CONFIG[LLM_MODEL]
global_counter = 0
model_semaphore = None
ml = ModerLoader(model_path=model_path)
ml = ModelLoader(model_path=model_path)
model, tokenizer = ml.loader(num_gpus=1, load_8bit=ISLOAD_8BIT, debug=ISDEBUG)
#model, tokenizer = load_model(model_path=model_path, device=DEVICE, num_gpus=1, load_8bit=True, debug=False)

View File

@@ -12,7 +12,7 @@ import requests
from urllib.parse import urljoin
from pilot.configs.model_config import DB_SETTINGS
from pilot.server.vectordb_qa import KnownLedgeBaseQA
from pilot.connections.mysql_conn import MySQLOperator
from pilot.connections.mysql import MySQLOperator
from pilot.vector_store.extract_tovec import get_vector_storelist, load_knownledge_from_doc, knownledge_tovec_st
from pilot.configs.model_config import LOGDIR, VICUNA_MODEL_SERVER, LLM_MODEL, DATASETS_DIR

21
pilot/singleton.py Normal file
View File

@@ -0,0 +1,21 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""The singleton metaclass for ensuring only one instance of a class."""
import abc
from typing import Any
class Singleton(abc.ABCMeta, type):
""" Singleton metaclass for ensuring only one instance of a class"""
_instances = {}
def __call__(cls, *args: Any, **kwargs: Any) -> Any:
"""Call method for the singleton metaclass"""
if cls not in cls._instances:
cls._instances[cls] = super(Singleton, cls).__call__(*args, **kwargs)
return cls._instances[cls]
class AbstractSingleton(abc.ABC, metaclass=Singleton):
"""Abstract singleton class for ensuring only one instance of a class"""
pass

View File

@@ -15,6 +15,20 @@ from pilot.configs.model_config import VECTORE_PATH, DATASETS_DIR, LLM_MODEL_CON
class KnownLedge2Vector:
"""KnownLedge2Vector class is order to load document to vector
and persist to vector store.
Args:
- model_name
Usage:
k2v = KnownLedge2Vector()
persist_dir = os.path.join(VECTORE_PATH, ".vectordb")
print(persist_dir)
for s, dc in k2v.query("what is oceanbase?"):
print(s, dc.page_content, dc.metadata)
"""
embeddings: object = None
model_name = LLM_MODEL_CONFIG["sentence-transforms"]
top_k: int = VECTOR_SEARCH_TOP_K
@@ -81,11 +95,4 @@ class KnownLedge2Vector:
dc, s = doc
yield s, dc
if __name__ == "__main__":
k2v = KnownLedge2Vector()
persist_dir = os.path.join(VECTORE_PATH, ".vectordb")
print(persist_dir)
for s, dc in k2v.query("什么是OceanBase"):
print(s, dc.page_content, dc.metadata)