fix:space resource error.

This commit is contained in:
aries_ckt
2024-08-14 20:40:27 +08:00
parent 1821f44c13
commit f1ca8a76ad
6 changed files with 347 additions and 21 deletions

View File

@@ -21,6 +21,7 @@ from dbgpt.core import (
)
from dbgpt.rag.retriever.rerank import RerankEmbeddingsRanker
from dbgpt.rag.retriever.rewrite import QueryRewrite
from dbgpt.serve.rag.retriever.knowledge_space import KnowledgeSpaceRetriever
from dbgpt.util.tracer import root_tracer, trace
CFG = Config()
@@ -77,7 +78,6 @@ class ChatKnowledge(BaseChat):
)
from dbgpt.serve.rag.models.models import (
KnowledgeSpaceDao,
KnowledgeSpaceEntity,
)
from dbgpt.storage.vector_store.base import VectorStoreConfig
@@ -113,12 +113,19 @@ class ChatKnowledge(BaseChat):
# We use reranker, so if the top_k is less than 20,
# we need to set it to 20
retriever_top_k = max(CFG.RERANK_TOP_K, 20)
self.embedding_retriever = EmbeddingRetriever(
# self.embedding_retriever = EmbeddingRetriever(
# top_k=retriever_top_k,
# index_store=vector_store_connector.index_client,
# query_rewrite=query_rewrite,
# rerank=reranker,
# )
self._space_retriever = KnowledgeSpaceRetriever(
space_id=self.knowledge_space,
top_k=retriever_top_k,
index_store=vector_store_connector.index_client,
query_rewrite=query_rewrite,
rerank=reranker,
)
self.prompt_template.template_is_strict = False
self.relations = None
self.chunk_dao = DocumentChunkDao()
@@ -275,6 +282,6 @@ class ChatKnowledge(BaseChat):
with root_tracer.start_span(
"execute_similar_search", metadata={"query": query}
):
return await self.embedding_retriever.aretrieve_with_scores(
return await self._space_retriever.aretrieve_with_scores(
query, self.recall_score
)

View File

@@ -2,7 +2,7 @@
import json
import uuid
from typing import Any, Dict
from typing import Any, Dict, Optional
from dbgpt._private.pydantic import BaseModel, Field, model_to_dict
@@ -61,6 +61,7 @@ class Chunk(Document):
default="\n",
description="Separator between metadata fields when converting to string.",
)
retriever: Optional[str] = Field(default=None, description="retriever name")
def to_dict(self, **kwargs: Any) -> Dict[str, Any]:
"""Convert Chunk to dict."""

View File

@@ -65,7 +65,7 @@ class KnowledgeSpaceRetrieverResource(RetrieverResource):
def __init__(self, name: str, space_name: str, context: Optional[dict] = None):
retriever = KnowledgeSpaceRetriever(
space_name=space_name,
space_id=space_name,
top_k=context.get("top_k", None) if context else 4,
)
super().__init__(name, retriever=retriever)

View File

@@ -5,8 +5,12 @@ from dbgpt.component import ComponentType
from dbgpt.configs.model_config import EMBEDDING_MODEL_CONFIG
from dbgpt.core import Chunk
from dbgpt.rag.embedding.embedding_factory import EmbeddingFactory
from dbgpt.rag.retriever import EmbeddingRetriever, Ranker, QueryRewrite
from dbgpt.rag.retriever.base import BaseRetriever
from dbgpt.serve.rag.connector import VectorStoreConnector
from dbgpt.serve.rag.models.models import KnowledgeSpaceDao
from dbgpt.serve.rag.retriever.qa_retriever import QARetriever
from dbgpt.serve.rag.retriever.retriever_chain import RetrieverChain
from dbgpt.storage.vector_store.filters import MetadataFilters
from dbgpt.util.executor_utils import ExecutorFactory, blocking_func_to_async
@@ -18,18 +22,24 @@ class KnowledgeSpaceRetriever(BaseRetriever):
def __init__(
self,
space_name: str = None,
space_id: str = None,
top_k: Optional[int] = 4,
query_rewrite: Optional[QueryRewrite] = None,
rerank: Optional[Ranker] = None,
):
"""
Args:
space_name (str): knowledge space name
space_id (str): knowledge space name
top_k (Optional[int]): top k
query_rewrite: (Optional[QueryRewrite]) query rewrite
rerank: (Optional[Ranker]) rerank
"""
if space_name is None:
raise ValueError("space_name is required")
self._space_name = space_name
if space_id is None:
raise ValueError("space_id is required")
self._space_id = space_id
self._top_k = top_k
self._query_rewrite = query_rewrite
self._rerank = rerank
embedding_factory = CFG.SYSTEM_APP.get_component(
"embedding_factory", EmbeddingFactory
)
@@ -37,8 +47,9 @@ class KnowledgeSpaceRetriever(BaseRetriever):
model_name=EMBEDDING_MODEL_CONFIG[CFG.EMBEDDING_MODEL]
)
from dbgpt.storage.vector_store.base import VectorStoreConfig
config = VectorStoreConfig(name=self._space_name, embedding_fn=embedding_fn)
space_dao = KnowledgeSpaceDao()
space = space_dao.get_one({"id": space_id})
config = VectorStoreConfig(name=space.name, embedding_fn=embedding_fn)
self._vector_store_connector = VectorStoreConnector(
vector_store_type=CFG.VECTOR_STORE_TYPE,
vector_store_config=config,
@@ -47,6 +58,20 @@ class KnowledgeSpaceRetriever(BaseRetriever):
ComponentType.EXECUTOR_DEFAULT, ExecutorFactory
).create()
self._retriever_chain = RetrieverChain(retrievers=[
QARetriever(space_id=space_id,
top_k=top_k,
embedding_fn=embedding_fn
),
EmbeddingRetriever(
index_store=self._vector_store_connector.index_client,
top_k=top_k,
query_rewrite=self._query_rewrite,
rerank=self._rerank
)
], executor=self._executor
)
def _retrieve(
self, query: str, filters: Optional[MetadataFilters] = None
) -> List[Chunk]:
@@ -59,8 +84,8 @@ class KnowledgeSpaceRetriever(BaseRetriever):
Return:
List[Chunk]: list of chunks
"""
candidates = self._vector_store_connector.similar_search(
doc=query, topk=self._top_k, filters=filters
candidates = self._retriever_chain.retrieve(
query=query, filters=filters
)
return candidates
@@ -80,13 +105,10 @@ class KnowledgeSpaceRetriever(BaseRetriever):
Return:
List[Chunk]: list of chunks with score
"""
candidates_with_score = self._vector_store_connector.similar_search_with_scores(
doc=query,
topk=self._top_k,
score_threshold=score_threshold,
filters=filters,
candidates_with_scores = self._retriever_chain.retrieve_with_scores(
query, score_threshold, filters
)
return candidates_with_score
return candidates_with_scores
async def _aretrieve(
self, query: str, filters: Optional[MetadataFilters] = None

View File

@@ -0,0 +1,218 @@
import ast
import json
import logging
from typing import List, Optional, Any
from dbgpt._private.config import Config
from dbgpt.app.knowledge.chunk_db import DocumentChunkDao, DocumentChunkEntity
from dbgpt.app.knowledge.document_db import KnowledgeDocumentDao
from dbgpt.component import ComponentType
from dbgpt.core import Chunk
from dbgpt.rag.retriever.base import BaseRetriever
from dbgpt.serve.rag.models.models import KnowledgeSpaceDao, KnowledgeSpaceEntity
from dbgpt.storage.vector_store.filters import MetadataFilters
from dbgpt.util.executor_utils import ExecutorFactory, blocking_func_to_async
from dbgpt.util.similarity_util import calculate_cosine_similarity
from dbgpt.util.string_utils import remove_trailing_punctuation
CFG = Config()
CHUNK_PAGE_SIZE = 1000
logger = logging.getLogger(__name__)
class QARetriever(BaseRetriever):
"""Document QA retriever."""
def __init__(
self,
space_id: str = None,
top_k: Optional[int] = 4,
embedding_fn: Optional[Any] = 4,
lambda_value: Optional[float] = 1e-5,
):
"""
Args:
space_id (str): knowledge space name
top_k (Optional[int]): top k
"""
if space_id is None:
raise ValueError("space_id is required")
self._top_k = top_k
self._lambda_value = lambda_value
self._space_dao = KnowledgeSpaceDao()
self._document_dao = KnowledgeDocumentDao()
self._chunk_dao = DocumentChunkDao()
self._embedding_fn = embedding_fn
space = self._space_dao.get_one(
{"id": space_id}
)
if not space:
raise ValueError("space not found")
self.documents = self._document_dao.get_list({"space": space.name})
self._executor = CFG.SYSTEM_APP.get_component(
ComponentType.EXECUTOR_DEFAULT, ExecutorFactory
).create()
def _retrieve(
self, query: str, filters: Optional[MetadataFilters] = None
) -> List[Chunk]:
"""Retrieve knowledge chunks.
Args:
query (str): query text
filters: (Optional[MetadataFilters]) metadata filters.
Return:
List[Chunk]: list of chunks
"""
query = remove_trailing_punctuation(query)
candidate_results = []
for doc in self.documents:
if doc.questions:
questions = json.loads(doc.questions)
if query in questions:
chunks = self._chunk_dao.get_document_chunks(
DocumentChunkEntity(
document_id=doc.id
),
page_size=CHUNK_PAGE_SIZE
)
candidates = [
Chunk(content=chunk.content,
metadata=ast.literal_eval(chunk.meta_info),
retriever=self.name(),
score=0.0)
for chunk in chunks
]
candidate_results.extend(
self._cosine_similarity_rerank(candidates, query)
)
return candidate_results
def _retrieve_with_score(
self,
query: str,
score_threshold: float,
filters: Optional[MetadataFilters] = None,
lambda_value: Optional[float] = None,
) -> List[Chunk]:
"""Retrieve knowledge chunks with score.
Args:
query (str): query text
score_threshold (float): score threshold
filters: (Optional[MetadataFilters]) metadata filters.
Return:
List[Chunk]: list of chunks with score
"""
query = remove_trailing_punctuation(query)
candidate_results = []
doc_ids = [doc.id for doc in self.documents]
query_param = DocumentChunkEntity()
chunks = self._chunk_dao.get_chunks_with_questions(
query=query_param,
document_ids=doc_ids
)
for chunk in chunks:
if chunk.questions:
questions = json.loads(chunk.questions)
if query in questions:
logger.info(f"qa chunk hit:{chunk}, question:{query}")
candidate_results.append(
Chunk(content=chunk.content,
chunk_id=str(chunk.id),
metadata={
"prop_field": ast.literal_eval(chunk.meta_info)
},
retriever=self.name(),
score=1.0
)
)
if len(candidate_results) > 0:
return self._cosine_similarity_rerank(candidate_results, query)
for doc in self.documents:
if doc.questions:
questions = json.loads(doc.questions)
if query in questions:
logger.info(f"qa document hit:{doc}, question:{query}")
chunks = self._chunk_dao.get_document_chunks(
DocumentChunkEntity(document_id=doc.id),
page_size=CHUNK_PAGE_SIZE
)
candidates_with_scores = [
Chunk(content=chunk.content,
chunk_id=str(chunk.id),
metadata={
"prop_field": ast.literal_eval(chunk.meta_info)
},
retriever=self.name(),
score=1.0)
for chunk in chunks
]
candidate_results.extend(
self._cosine_similarity_rerank(candidates_with_scores, query)
)
return candidate_results
async def _aretrieve(
self, query: str, filters: Optional[MetadataFilters] = None
) -> List[Chunk]:
"""Retrieve knowledge chunks.
Args:
query (str): query text
filters: (Optional[MetadataFilters]) metadata filters.
Return:
List[Chunk]: list of chunks
"""
candidates = await blocking_func_to_async(
self._executor, self._retrieve, query, filters
)
return candidates
async def _aretrieve_with_score(
self,
query: str,
score_threshold: float,
filters: Optional[MetadataFilters] = None,
) -> List[Chunk]:
"""Retrieve knowledge chunks with score.
Args:
query (str): query text
score_threshold (float): score threshold
filters: (Optional[MetadataFilters]) metadata filters.
Return:
List[Chunk]: list of chunks with score
"""
candidates_with_score = await blocking_func_to_async(
self._executor, self._retrieve_with_score, query, score_threshold, filters
)
return candidates_with_score
def _cosine_similarity_rerank(self, candidates_with_scores: List[Chunk]
, query: str) -> List[Chunk]:
"""Rerank candidates using cosine similarity."""
if len(candidates_with_scores) > self._top_k:
for candidate in candidates_with_scores:
similarity = calculate_cosine_similarity(
embeddings=self._embedding_fn,
prediction=query,
contexts=[candidate.content]
)
score = float(similarity.mean())
candidate.score = score
candidates_with_scores.sort(key=lambda x: x.score, reverse=True)
candidates_with_scores = candidates_with_scores[: self._top_k]
candidates_with_scores = [
Chunk(content=candidate.content,
chunk_id=candidate.chunk_id,
metadata=candidate.metadata,
retriever=self.name(),
score=1.0)
for candidate in candidates_with_scores
]
return candidates_with_scores
@classmethod
def name(self):
"""Return retriever name."""
return "qa_retriever"

View File

@@ -0,0 +1,78 @@
from concurrent.futures import ThreadPoolExecutor, Executor
from typing import Optional, List
from dbgpt.core import Chunk
from dbgpt.rag.retriever.base import BaseRetriever
from dbgpt.storage.vector_store.filters import MetadataFilters
from dbgpt.util.executor_utils import blocking_func_to_async
class RetrieverChain(BaseRetriever):
"""Retriever chain class."""
def __init__(self, retrievers: Optional[List[BaseRetriever]] = None,
executor: Optional[Executor] = None):
"""Create retriever chain instance."""
self._retrievers = retrievers or []
self._executor = executor or ThreadPoolExecutor()
def _retrieve(self, query: str, filters: Optional[MetadataFilters] = None) -> List[
Chunk]:
"""Retrieve knowledge chunks.
Args:
query (str): query text
filters: (Optional[MetadataFilters]) metadata filters.
Return:
List[Chunk]: list of chunks
"""
for retriever in self._retrievers:
candidates = retriever.retrieve(
query, filters
)
if candidates:
return candidates
return []
async def _aretrieve(self, query: str, filters: Optional[MetadataFilters] = None) -> \
List[Chunk]:
"""Retrieve knowledge chunks.
Args:
query (str): query text
filters: (Optional[MetadataFilters]) metadata filters.
Return:
List[Chunk]: list of chunks
"""
candidates = await blocking_func_to_async(
self._executor, self._retrieve, query, filters
)
return candidates
def _retrieve_with_score(self, query: str, score_threshold: float, filters: Optional[MetadataFilters] = None) -> List[Chunk]:
"""Retrieve knowledge chunks.
Args:
query (str): query text
filters: (Optional[MetadataFilters]) metadata filters.
Return:
List[Chunk]: list of chunks
"""
for retriever in self._retrievers:
candidates_with_scores = retriever.retrieve_with_scores(
query=query, score_threshold=score_threshold, filters=filters
)
if candidates_with_scores:
return candidates_with_scores
return []
async def _aretrieve_with_score(self, query: str, score_threshold: float, filters: Optional[MetadataFilters] = None) -> List[Chunk]:
"""Retrieve knowledge chunks with score.
Args:
query (str): query text
score_threshold (float): score threshold
filters: (Optional[MetadataFilters]) metadata filters.
Return:
List[Chunk]: list of chunks with score
"""
candidates_with_score = await blocking_func_to_async(
self._executor, self._retrieve_with_score, query, score_threshold, filters
)
return candidates_with_score