mirror of
https://github.com/csunny/DB-GPT.git
synced 2025-08-01 16:18:27 +00:00
148 lines
5.6 KiB
Python
148 lines
5.6 KiB
Python
"""Knowledge graph class."""
|
|
import asyncio
|
|
import logging
|
|
import os
|
|
from typing import List, Optional
|
|
|
|
from dbgpt._private.pydantic import ConfigDict, Field
|
|
from dbgpt.core import Chunk, LLMClient
|
|
from dbgpt.rag.transformer.keyword_extractor import KeywordExtractor
|
|
from dbgpt.rag.transformer.triplet_extractor import TripletExtractor
|
|
from dbgpt.storage.graph_store.base import GraphStoreBase, GraphStoreConfig
|
|
from dbgpt.storage.graph_store.factory import GraphStoreFactory
|
|
from dbgpt.storage.graph_store.graph import Graph
|
|
from dbgpt.storage.knowledge_graph.base import KnowledgeGraphBase, KnowledgeGraphConfig
|
|
from dbgpt.storage.vector_store.filters import MetadataFilters
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class BuiltinKnowledgeGraphConfig(KnowledgeGraphConfig):
|
|
"""Builtin knowledge graph config."""
|
|
|
|
model_config = ConfigDict(arbitrary_types_allowed=True)
|
|
|
|
llm_client: LLMClient = Field(default=None, description="The default llm client.")
|
|
|
|
model_name: str = Field(default=None, description="The name of llm model.")
|
|
|
|
graph_store_type: str = Field(
|
|
default="TuGraph", description="The type of graph store."
|
|
)
|
|
|
|
|
|
class BuiltinKnowledgeGraph(KnowledgeGraphBase):
|
|
"""Builtin knowledge graph class."""
|
|
|
|
def __init__(self, config: BuiltinKnowledgeGraphConfig):
|
|
"""Create builtin knowledge graph instance."""
|
|
self._config = config
|
|
super().__init__()
|
|
self._llm_client = config.llm_client
|
|
if not self._llm_client:
|
|
raise ValueError("No llm client provided.")
|
|
|
|
self._model_name = config.model_name
|
|
self._triplet_extractor = TripletExtractor(self._llm_client, self._model_name)
|
|
self._keyword_extractor = KeywordExtractor(self._llm_client, self._model_name)
|
|
self._graph_store_type = (
|
|
os.getenv("GRAPH_STORE_TYPE", "TuGraph") or config.graph_store_type
|
|
)
|
|
|
|
def configure(cfg: GraphStoreConfig):
|
|
cfg.name = self._config.name
|
|
cfg.embedding_fn = self._config.embedding_fn
|
|
|
|
self._graph_store: GraphStoreBase = GraphStoreFactory.create(
|
|
self._graph_store_type, configure
|
|
)
|
|
|
|
def load_document(self, chunks: List[Chunk]) -> List[str]:
|
|
"""Extract and persist triplets to graph store."""
|
|
|
|
async def process_chunk(chunk):
|
|
triplets = await self._triplet_extractor.extract(chunk.content)
|
|
for triplet in triplets:
|
|
self._graph_store.insert_triplet(*triplet)
|
|
logger.info(f"load {len(triplets)} triplets from chunk {chunk.chunk_id}")
|
|
return chunk.chunk_id
|
|
|
|
# wait async tasks completed
|
|
tasks = [process_chunk(chunk) for chunk in chunks]
|
|
loop = asyncio.new_event_loop()
|
|
asyncio.set_event_loop(loop)
|
|
result = loop.run_until_complete(asyncio.gather(*tasks))
|
|
loop.close()
|
|
return result
|
|
|
|
async def aload_document(self, chunks: List[Chunk]) -> List[str]: # type: ignore
|
|
"""Extract and persist triplets to graph store.
|
|
|
|
Args:
|
|
chunks: List[Chunk]: document chunks.
|
|
Return:
|
|
List[str]: chunk ids.
|
|
"""
|
|
for chunk in chunks:
|
|
triplets = await self._triplet_extractor.extract(chunk.content)
|
|
for triplet in triplets:
|
|
self._graph_store.insert_triplet(*triplet)
|
|
logger.info(f"load {len(triplets)} triplets from chunk {chunk.chunk_id}")
|
|
return [chunk.chunk_id for chunk in chunks]
|
|
|
|
def similar_search_with_scores(
|
|
self,
|
|
text,
|
|
topk,
|
|
score_threshold: float,
|
|
filters: Optional[MetadataFilters] = None,
|
|
) -> List[Chunk]:
|
|
"""Search neighbours on knowledge graph."""
|
|
raise Exception("Sync similar_search_with_scores not supported")
|
|
|
|
async def asimilar_search_with_scores(
|
|
self,
|
|
text,
|
|
topk,
|
|
score_threshold: float,
|
|
filters: Optional[MetadataFilters] = None,
|
|
) -> List[Chunk]:
|
|
"""Search neighbours on knowledge graph."""
|
|
if not filters:
|
|
logger.info("Filters on knowledge graph not supported yet")
|
|
|
|
# extract keywords and explore graph store
|
|
keywords = await self._keyword_extractor.extract(text)
|
|
subgraph = self._graph_store.explore(keywords, limit=topk)
|
|
logger.info(f"Search subgraph from {len(keywords)} keywords")
|
|
|
|
content = (
|
|
"The following vertices and edges data after [Subgraph Data] "
|
|
"are retrieved from the knowledge graph based on the keywords:\n"
|
|
f"Keywords:\n{','.join(keywords)}\n"
|
|
"---------------------\n"
|
|
"You can refer to the sample vertices and edges to understand "
|
|
"the real knowledge graph data provided by [Subgraph Data].\n"
|
|
"Sample vertices:\n"
|
|
"(alice)\n"
|
|
"(bob:{age:28})\n"
|
|
'(carry:{age:18;role:"teacher"})\n\n'
|
|
"Sample edges:\n"
|
|
"(alice)-[reward]->(alice)\n"
|
|
'(alice)-[notify:{method:"email"}]->'
|
|
'(carry:{age:18;role:"teacher"})\n'
|
|
'(bob:{age:28})-[teach:{course:"math";hour:180}]->(alice)\n'
|
|
"---------------------\n"
|
|
f"Subgraph Data:\n{subgraph.format()}\n"
|
|
)
|
|
return [Chunk(content=content, metadata=subgraph.schema())]
|
|
|
|
def query_graph(self, limit: Optional[int] = None) -> Graph:
|
|
"""Query graph."""
|
|
return self._graph_store.get_full_graph(limit)
|
|
|
|
def delete_vector_name(self, index_name: str):
|
|
"""Delete vector name."""
|
|
logger.info(f"Remove graph index {index_name}")
|
|
self._graph_store.drop()
|