Files
DB-GPT/pilot/source_embedding/url_embedding.py
2023-05-18 20:03:24 +08:00

43 lines
1.2 KiB
Python

from typing import List
from langchain.text_splitter import CharacterTextSplitter
from pilot.source_embedding import SourceEmbedding, register
from bs4 import BeautifulSoup
from langchain.document_loaders import WebBaseLoader
from langchain.schema import Document
class URLEmbedding(SourceEmbedding):
"""url embedding for read url document."""
def __init__(self, file_path, model_name, vector_store_config):
"""Initialize with url path."""
self.file_path = file_path
self.model_name = model_name
self.vector_store_config = vector_store_config
@register
def read(self):
"""Load from url path."""
loader = WebBaseLoader(web_path=self.file_path)
text_splitor = CharacterTextSplitter(chunk_size=1000, chunk_overlap=20, length_function=len)
return loader.load_and_split(text_splitor)
@register
def data_process(self, documents: List[Document]):
i = 0
for d in documents:
content = d.page_content.replace("\n", "")
soup = BeautifulSoup(content, 'html.parser')
for tag in soup(['!doctype', 'meta']):
tag.extract()
documents[i].page_content = soup.get_text()
i += 1
return documents