mirror of
https://github.com/csunny/DB-GPT.git
synced 2025-10-22 01:22:34 +00:00
181 lines
4.4 KiB
Python
181 lines
4.4 KiB
Python
#!/usr/bin/env python3
|
|
# -*- coding: utf-8 -*-
|
|
|
|
import os
|
|
import json
|
|
import transformers
|
|
from transformers import LlamaTokenizer, LlamaForCausalLM
|
|
|
|
from typing import List
|
|
from peft import (
|
|
LoraConfig,
|
|
get_peft_model,
|
|
get_peft_model_state_dict,
|
|
prepare_model_for_int8_training,
|
|
)
|
|
|
|
import torch
|
|
from datasets import load_dataset
|
|
import pandas as pd
|
|
|
|
|
|
from pilot.configs.model_config import DATA_DIR, LLM_MODEL, LLM_MODEL_CONFIG
|
|
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
CUTOFF_LEN = 50
|
|
|
|
df = pd.read_csv(os.path.join(DATA_DIR, "BTC_Tweets_Updated.csv"))
|
|
|
|
def sentiment_score_to_name(score: float):
|
|
if score > 0:
|
|
return "Positive"
|
|
elif score < 0:
|
|
return "Negative"
|
|
return "Neutral"
|
|
|
|
|
|
dataset_data = [
|
|
{
|
|
"instruction": "Detect the sentiment of the tweet.",
|
|
"input": row_dict["Tweet"],
|
|
"output": sentiment_score_to_name(row_dict["New_Sentiment_State"])
|
|
}
|
|
for row_dict in df.to_dict(orient="records")
|
|
]
|
|
|
|
with open(os.path.join(DATA_DIR, "alpaca-bitcoin-sentiment-dataset.json"), "w") as f:
|
|
json.dump(dataset_data, f)
|
|
|
|
|
|
data = load_dataset("json", data_files=os.path.join(DATA_DIR, "alpaca-bitcoin-sentiment-dataset.json"))
|
|
print(data["train"])
|
|
|
|
BASE_MODEL = LLM_MODEL_CONFIG[LLM_MODEL]
|
|
model = LlamaForCausalLM.from_pretrained(
|
|
BASE_MODEL,
|
|
torch_dtype=torch.float16,
|
|
device_map="auto",
|
|
offload_folder=os.path.join(DATA_DIR, "vicuna-lora")
|
|
)
|
|
|
|
tokenizer = LlamaTokenizer.from_pretrained(BASE_MODEL)
|
|
tokenizer.pad_token_id = (0)
|
|
tokenizer.padding_side = "left"
|
|
|
|
def generate_prompt(data_point):
|
|
return f"""Blow is an instruction that describes a task, paired with an input that provide future context.
|
|
Write a response that appropriately completes the request. #noqa:
|
|
|
|
### Instruct:
|
|
{data_point["instruction"]}
|
|
### Input
|
|
{data_point["input"]}
|
|
### Response
|
|
{data_point["output"]}
|
|
"""
|
|
|
|
def tokenize(prompt, add_eos_token=True):
|
|
result = tokenizer(
|
|
prompt,
|
|
truncation=True,
|
|
max_length=CUTOFF_LEN,
|
|
padding=False,
|
|
return_tensors=None,
|
|
)
|
|
|
|
if (result["input_ids"][-1] != tokenizer.eos_token_id and len(result["input_ids"]) < CUTOFF_LEN and add_eos_token):
|
|
result["input_ids"].append(tokenizer.eos_token_id)
|
|
result["attention_mask"].append(1)
|
|
|
|
result["labels"] = result["input_ids"].copy()
|
|
return result
|
|
|
|
def generate_and_tokenize_prompt(data_point):
|
|
full_prompt = generate_prompt(data_point)
|
|
tokenized_full_prompt = tokenize(full_prompt)
|
|
return tokenized_full_prompt
|
|
|
|
|
|
train_val = data["train"].train_test_split(
|
|
test_size=200, shuffle=True, seed=42
|
|
)
|
|
|
|
train_data = (
|
|
train_val["train"].map(generate_and_tokenize_prompt)
|
|
)
|
|
|
|
val_data = (
|
|
train_val["test"].map(generate_and_tokenize_prompt)
|
|
)
|
|
|
|
# Training
|
|
LORA_R = 8
|
|
LORA_ALPHA = 16
|
|
LORA_DROPOUT = 0.05
|
|
LORA_TARGET_MODULES = [
|
|
"q_proj",
|
|
"v_proj",
|
|
]
|
|
|
|
BATCH_SIZE = 128
|
|
MICRO_BATCH_SIZE = 4
|
|
GRADIENT_ACCUMULATION_STEPS = BATCH_SIZE // MICRO_BATCH_SIZE
|
|
LEARNING_RATE = 3e-4
|
|
TRAIN_STEPS = 300
|
|
OUTPUT_DIR = "experiments"
|
|
|
|
# We can now prepare model for training
|
|
model = prepare_model_for_int8_training(model)
|
|
config = LoraConfig(
|
|
r = LORA_R,
|
|
lora_alpha=LORA_ALPHA,
|
|
target_modules=LORA_TARGET_MODULES,
|
|
lora_dropout=LORA_DROPOUT,
|
|
bias="none",
|
|
task_type="CAUSAL_LM",
|
|
)
|
|
|
|
model = get_peft_model(model, config)
|
|
model.print_trainable_parameters()
|
|
|
|
training_arguments = transformers.TrainingArguments(
|
|
per_device_train_batch_size=MICRO_BATCH_SIZE,
|
|
gradient_accumulation_steps=GRADIENT_ACCUMULATION_STEPS,
|
|
warmup_steps=100,
|
|
max_steps=TRAIN_STEPS,
|
|
no_cuda=True,
|
|
learning_rate=LEARNING_RATE,
|
|
logging_steps=10,
|
|
optim="adamw_torch",
|
|
evaluation_strategy="steps",
|
|
save_strategy="steps",
|
|
eval_steps=50,
|
|
save_steps=50,
|
|
output_dir=OUTPUT_DIR,
|
|
save_total_limit=3,
|
|
load_best_model_at_end=True,
|
|
report_to="tensorboard"
|
|
)
|
|
|
|
data_collector = transformers.DataCollatorForSeq2Seq(
|
|
tokenizer, pad_to_multiple_of=8, return_tensors="pt", padding=True
|
|
)
|
|
|
|
trainer = transformers.Trainer(
|
|
model=model,
|
|
train_dataset=train_data,
|
|
eval_dataset=val_data,
|
|
args=training_arguments,
|
|
data_collector=data_collector
|
|
)
|
|
|
|
model.config.use_cache = False
|
|
old_state_dict = model.state_dict
|
|
model.state_dict = (
|
|
lambda self, *_, **__: get_peft_model_state_dict(
|
|
self, old_state_dict()
|
|
)
|
|
).__get__(model, type(model))
|
|
|
|
trainer.train()
|
|
model.save_pretrained(OUTPUT_DIR)
|