Files
DB-GPT/pilot/source_embedding/search_milvus.py
chenketing 365319a86c embedding
2023-05-10 20:58:35 +08:00

53 lines
1.4 KiB
Python

from langchain.vectorstores import Milvus
from pymilvus import Collection,utility
from pymilvus import connections, DataType, FieldSchema, CollectionSchema
from pilot.source_embedding.Text2Vectors import Text2Vectors
# milvus = connections.connect(
# alias="default",
# host='localhost',
# port="19530"
# )
# collection = Collection("book")
# Get an existing collection.
# collection.load()
#
# search_params = {"metric_type": "L2", "params": {}, "offset": 5}
#
# results = collection.search(
# data=[[0.1, 0.2]],
# anns_field="book_intro",
# param=search_params,
# limit=10,
# expr=None,
# output_fields=['book_id'],
# consistency_level="Strong"
# )
#
# # get the IDs of all returned hits
# results[0].ids
#
# # get the distances to the query vector from all returned hits
# results[0].distances
#
# # get the value of an output field specified in the search request.
# # vector fields are not supported yet.
# hit = results[0][0]
# hit.entity.get('title')
milvus = connections.connect(
alias="default",
host='localhost',
port="19530"
)
data = ["aaa", "bbb"]
text_embeddings = Text2Vectors()
mivuls = Milvus(collection_name='document', embedding_function= text_embeddings, connection_args={"host": "127.0.0.1", "port": "19530", "alias":"default"}, text_field="")
mivuls.from_texts(texts=data, embedding=text_embeddings)
# docs,
# embedding=embeddings,
# connection_args={"host": "127.0.0.1", "port": "19530", "alias": "default"}
# )