embedding

This commit is contained in:
chenketing 2023-05-10 20:58:35 +08:00
parent 1d2083063c
commit 365319a86c
10 changed files with 400 additions and 1 deletions

1
.gitignore vendored
View File

@ -6,6 +6,7 @@ __pycache__/
# C extensions
*.so
.idea
.vscode
# Distribution / packaging
.Python

View File

@ -1 +1,11 @@
__version__ = "0.0.1"
from pilot.source_embedding import (SourceEmbedding, register)
from pilot.source_embedding import TextToVector
from pilot.source_embedding import Text2Vectors
__all__ = [
"SourceEmbedding",
"TextToVector",
"Text2Vectors",
"register"
]

View File

@ -0,0 +1,17 @@
from typing import List
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
import torch
device = "cuda" if torch.cuda.is_available() else "cpu"
from langchain.embeddings.base import Embeddings
class Text2Vectors(Embeddings):
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Embed search docs."""
def embed_query(self, text: str) -> List[float]:
hfemb = HuggingFaceEmbeddings(model_name="/Users/chenketing/Desktop/project/all-MiniLM-L6-v2")
return hfemb.embed_documents(text)[0]

View File

@ -0,0 +1,12 @@
from pilot.source_embedding.source_embedding import SourceEmbedding
from pilot.source_embedding.source_embedding import register
from pilot.source_embedding.text_to_vector import TextToVector
from pilot.source_embedding.Text2Vectors import Text2Vectors
__all__ = [
"SourceEmbedding",
"TextToVector",
"Text2Vectors",
"register"
]

View File

@ -0,0 +1,14 @@
from langchain.document_loaders import UnstructuredFileLoader
from langchain.text_splitter import CharacterTextSplitter
from pilot import TextToVector
path="/Users/chenketing/Downloads/OceanBase-数据库-V4.1.0-OceanBase-介绍.pdf"
loader = UnstructuredFileLoader(path)
text_splitor = CharacterTextSplitter()
docs = loader.load_and_split(text_splitor)
# doc["vector"] = TextToVector.textToVector(doc["content"])[0]

View File

@ -0,0 +1,54 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import json
import os
from bs4 import BeautifulSoup
from langchain.document_loaders import UnstructuredFileLoader, UnstructuredPDFLoader
from langchain.vectorstores import Milvus, Chroma
from pymilvus import connections
from pilot.server.vicuna_server import embeddings
from pilot.source_embedding.text_to_vector import TextToVector
# from vector_store import ESVectorStore
from pilot.source_embedding import SourceEmbedding, register
class PDFEmbedding(SourceEmbedding):
"""yuque embedding for read yuque document."""
def __init__(self, file_path, model_name, vector_store_config):
"""Initialize with YuqueLoader url."""
self.file_path = file_path
self.model_name = model_name
self.vector_store_config = vector_store_config
@register
def read(self):
"""Load from pdf path."""
docs = []
# loader = UnstructuredFileLoader(self.file_path)
loader = UnstructuredPDFLoader(self.file_path, mode="elements")
return loader.load()[0]
@register
def text_to_vector(self, docs):
"""Load from yuque url."""
for doc in docs:
doc["vector"] = TextToVector.textToVector(doc["content"])[0]
return docs
@register
def index_to_store(self, docs):
"""index into vector store."""
# vector_db = Milvus.add_texts(
# docs,
# embeddings,
# connection_args={"host": "127.0.0.1", "port": "19530"},
# )
db = Chroma.from_documents(docs, embeddings)
return Chroma.from_documents(docs, embeddings)

View File

@ -0,0 +1,53 @@
from langchain.vectorstores import Milvus
from pymilvus import Collection,utility
from pymilvus import connections, DataType, FieldSchema, CollectionSchema
from pilot.source_embedding.Text2Vectors import Text2Vectors
# milvus = connections.connect(
# alias="default",
# host='localhost',
# port="19530"
# )
# collection = Collection("book")
# Get an existing collection.
# collection.load()
#
# search_params = {"metric_type": "L2", "params": {}, "offset": 5}
#
# results = collection.search(
# data=[[0.1, 0.2]],
# anns_field="book_intro",
# param=search_params,
# limit=10,
# expr=None,
# output_fields=['book_id'],
# consistency_level="Strong"
# )
#
# # get the IDs of all returned hits
# results[0].ids
#
# # get the distances to the query vector from all returned hits
# results[0].distances
#
# # get the value of an output field specified in the search request.
# # vector fields are not supported yet.
# hit = results[0][0]
# hit.entity.get('title')
milvus = connections.connect(
alias="default",
host='localhost',
port="19530"
)
data = ["aaa", "bbb"]
text_embeddings = Text2Vectors()
mivuls = Milvus(collection_name='document', embedding_function= text_embeddings, connection_args={"host": "127.0.0.1", "port": "19530", "alias":"default"}, text_field="")
mivuls.from_texts(texts=data, embedding=text_embeddings)
# docs,
# embedding=embeddings,
# connection_args={"host": "127.0.0.1", "port": "19530", "alias": "default"}
# )

View File

@ -0,0 +1,112 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
from abc import ABC, abstractmethod
from pymilvus import connections, FieldSchema, DataType, CollectionSchema
from pilot.source_embedding.text_to_vector import TextToVector
from typing import List
registered_methods = []
def register(method):
registered_methods.append(method.__name__)
return method
class SourceEmbedding(ABC):
"""base class for read data source embedding pipeline.
include data read, data process, data split, data to vector, data index vector store
Implementations should implement the method
"""
def __init__(self, yuque_path, model_name, vector_store_config):
"""Initialize with YuqueLoader url, model_name, vector_store_config"""
self.yuque_path = yuque_path
self.model_name = model_name
self.vector_store_config = vector_store_config
# Sub-classes should implement this method
# as return list(self.lazy_load()).
# This method returns a List which is materialized in memory.
@abstractmethod
@register
def read(self) -> List[ABC]:
"""read datasource into document objects."""
@register
def data_process(self, text):
"""pre process data."""
@register
def text_split(self, text):
"""text split chunk"""
pass
@register
def text_to_vector(self, docs):
"""transform vector"""
for doc in docs:
doc["vector"] = TextToVector.textToVector(doc["content"])[0]
return docs
@register
def index_to_store(self):
"""index to vector store"""
milvus = connections.connect(
alias="default",
host='localhost',
port="19530"
)
doc_id = FieldSchema(
name="doc_id",
dtype=DataType.INT64,
is_primary=True,
)
doc_vector = FieldSchema(
name="doc_vector",
dtype=DataType.FLOAT_VECTOR,
dim=self.vector_store_config["dim"]
)
schema = CollectionSchema(
fields=[doc_id, doc_vector],
description=self.vector_store_config["description"]
)
@register
def index_to_store(self):
"""index to vector store"""
milvus = connections.connect(
alias="default",
host='localhost',
port="19530"
)
doc_id = FieldSchema(
name="doc_id",
dtype=DataType.INT64,
is_primary=True,
)
doc_vector = FieldSchema(
name="doc_vector",
dtype=DataType.FLOAT_VECTOR,
dim=self.vector_store_config["dim"]
)
schema = CollectionSchema(
fields=[doc_id, doc_vector],
description=self.vector_store_config["description"]
)
def source_embedding(self):
if 'read' in registered_methods:
text = self.read()
if 'process' in registered_methods:
self.process(text)
if 'text_split' in registered_methods:
self.text_split(text)
if 'text_to_vector' in registered_methods:
self.text_to_vector(text)
if 'index_to_store' in registered_methods:
self.index_to_store(text)

View File

@ -0,0 +1,18 @@
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
import torch
device = "cuda" if torch.cuda.is_available() else "cpu"
class TextToVector:
@staticmethod
def textToVector(text):
hfemb = HuggingFaceEmbeddings(model_name="/Users/chenketing/Desktop/project/all-MiniLM-L6-v2")
return hfemb.embed_documents([text])
@staticmethod
def textlist_to_vector(textlist):
hfemb = HuggingFaceEmbeddings(model_name="/Users/chenketing/Desktop/project/all-MiniLM-L6-v2")
return hfemb.embed_documents(textlist)

View File

@ -0,0 +1,108 @@
from random import random
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import Milvus
from langchain.document_loaders import WebBaseLoader
from langchain.text_splitter import CharacterTextSplitter
from pymilvus import connections, DataType, FieldSchema, CollectionSchema
from pymilvus import Collection
from pilot.source_embedding.text_to_vector import TextToVector
loader = WebBaseLoader([
"https://milvus.io/docs/overview.md",
])
docs = loader.load()
# Split the documents into smaller chunks
# text_splitter = CharacterTextSplitter(chunk_size=1024, chunk_overlap=0)
# docs = text_splitter.split_documents(docs)
embeddings = TextToVector.textToVector(docs[0].page_content)
milvus = connections.connect(
alias="default",
host='localhost',
port="19530"
)
# collection = Collection("test_book")
# data = [{"doc_id": 11011, "content": 11011, "title": 11011, "vector": embeddings[0]}]
# # collection = Collection("document")
#
# # collection.insert(data=data)
# entities = [
# {
# 'doc_id': d['doc_id'],
# 'vector': d['vector'],
# 'content': d['content'],
# 'title': d['titlseae'],
# "type": DataType.FLOAT_VECTOR
# } for d in data
# ]
#
# milvus.insert(collection_name="document", entities=entities)
# print("success")
# 定义集合的字段
# fields = [
# FieldSchema(name="vector", dtype=DataType.FLOAT_VECTOR),
# FieldSchema(name="age", dtype=DataType.INT32),
# FieldSchema(name="gender", dtype=DataType.STRING),
# FieldSchema(name="id", dtype=DataType.INT64) # 添加主键字段
# ]
# book_id = FieldSchema(
# name="book_id",
# dtype=DataType.INT64,
# is_primary=True,
# )
# book_name = FieldSchema(
# name="book_name",
# dtype=DataType.BINARY_VECTOR,
# max_length=200,
# )
# word_count = FieldSchema(
# name="word_count",
# dtype=DataType.INT64,
# )
# book_intro = FieldSchema(
# name="book_intro",
# dtype=DataType.FLOAT_VECTOR,
# dim=2
# )
# schema = CollectionSchema(
# fields=[book_id, book_name, word_count, book_intro],
# description="Test book search"
# )
collection_name = "test_book"
collection = Collection(
name=collection_name,
schema=schema,
using='default',
shards_num=2
)
# 插入数据
# entities = [[
# {"book_id": 30, "book_intro": [0.1, 0.2], "word_count": 1},
# {"book_id": 25, "book_intro": [0.1, 0.2], "word_count": 2},
# {"book_id": 40, "book_intro": [0.1, 0.2], "word_count": 3}
# ]]
entities = [[30, 25, 40], ["test1", "test2", "test3"], [1, 2, 3], [[0.1, 0.2], [0.1, 0.2], [0.1, 0.2]]]
collection.insert(entities)
print("success")
# vector_store = Milvus.from_documents(
# docs,
# embedding=embeddings,
# connection_args={"host": "127.0.0.1", "port": "19530", "alias": "default"}
# )