3.6 KiB
		
	
	
	
	
	
	
	
			
		
		
	
	Docker Install
Docker (Experimental)
1. Preparing docker images
Pull docker image from the Eosphoros AI Docker Hub
docker pull eosphorosai/dbgpt:latest
(Optional) Building Docker image
bash docker/build_all_images.sh
Review images by listing them:
docker images|grep "eosphorosai/dbgpt"
Output should look something like the following:
eosphorosai/dbgpt-allinone       latest    349d49726588   27 seconds ago       15.1GB
eosphorosai/dbgpt                latest    eb3cdc5b4ead   About a minute ago   14.5GB
eosphorosai/dbgpt is the base image, which contains the project's base dependencies and a sqlite database. eosphorosai/dbgpt-allinone build from eosphorosai/dbgpt, which contains a mysql database.
You can pass some parameters to docker/build_all_images.sh.
bash docker/build_all_images.sh \
--base-image nvidia/cuda:11.8.0-runtime-ubuntu22.04 \
--pip-index-url https://pypi.tuna.tsinghua.edu.cn/simple \
--language zh
You can execute the command bash docker/build_all_images.sh --help to see more usage.
2. Run docker container
Run with local model and SQLite database
docker run --ipc host --gpus all -d \
    -p 5000:5000 \
    -e LOCAL_DB_TYPE=sqlite \
    -e LOCAL_DB_PATH=data/default_sqlite.db \
    -e LLM_MODEL=vicuna-13b-v1.5 \
    -e LANGUAGE=zh \
    -v /data/models:/app/models \
    --name dbgpt \
    eosphorosai/dbgpt
Open http://localhost:5000 with your browser to see the product.
-e LLM_MODEL=vicuna-13b-v1.5, means we use vicuna-13b-v1.5 as llm model, see /pilot/configs/model_config.LLM_MODEL_CONFIG-v /data/models:/app/models, means we mount the local model file directory/data/modelsto the docker container directory/app/models, please replace it with your model file directory.
You can see log with command:
docker logs dbgpt -f
Run with local model and MySQL database
docker run --ipc host --gpus all -d -p 3306:3306 \
    -p 5000:5000 \
    -e LOCAL_DB_HOST=127.0.0.1 \
    -e LOCAL_DB_PASSWORD=aa123456 \
    -e MYSQL_ROOT_PASSWORD=aa123456 \
    -e LLM_MODEL=vicuna-13b-v1.5 \
    -e LANGUAGE=zh \
    -v /data/models:/app/models \
    --name db-gpt-allinone \
    db-gpt-allinone
Open http://localhost:5000 with your browser to see the product.
-e LLM_MODEL=vicuna-13b-v1.5, means we use vicuna-13b-v1.5 as llm model, see /pilot/configs/model_config.LLM_MODEL_CONFIG-v /data/models:/app/models, means we mount the local model file directory/data/modelsto the docker container directory/app/models, please replace it with your model file directory.
You can see log with command:
docker logs db-gpt-allinone -f
Run with openai interface
PROXY_API_KEY="You api key"
PROXY_SERVER_URL="https://api.openai.com/v1/chat/completions"
docker run --gpus all -d -p 3306:3306 \
    -p 5000:5000 \
    -e LOCAL_DB_HOST=127.0.0.1 \
    -e LOCAL_DB_PASSWORD=aa123456 \
    -e MYSQL_ROOT_PASSWORD=aa123456 \
    -e LLM_MODEL=proxyllm \
    -e PROXY_API_KEY=$PROXY_API_KEY \
    -e PROXY_SERVER_URL=$PROXY_SERVER_URL \
    -e LANGUAGE=zh \
    -v /data/models/text2vec-large-chinese:/app/models/text2vec-large-chinese \
    --name db-gpt-allinone \
    db-gpt-allinone
-e LLM_MODEL=proxyllm, means we use proxy llm(openai interface, fastchat interface...)-v /data/models/text2vec-large-chinese:/app/models/text2vec-large-chinese, means we mount the local text2vec model to the docker container.
Open http://localhost:5000 with your browser to see the product.