mirror of
https://github.com/csunny/DB-GPT.git
synced 2025-10-08 15:09:35 +00:00
1.9 KiB
1.9 KiB
URL
url embedding can import PDF text into a vector knowledge base. The entire embedding process includes the read (loading data), data_process (data processing), and index_to_store (embedding to the vector database) methods.
inheriting the SourceEmbedding
class URLEmbedding(SourceEmbedding):
"""url embedding for read url document."""
def __init__(
self,
file_path,
vector_store_config,
text_splitter: Optional[TextSplitter] = None,
):
"""Initialize url word path."""
super().__init__(file_path, vector_store_config, text_splitter=None)
self.file_path = file_path
self.vector_store_config = vector_store_config
self.text_splitter = text_splitter or None
implement read() and data_process() read() method allows you to read data and split data into chunk
@register
def read(self):
"""Load from url path."""
loader = WebBaseLoader(web_path=self.file_path)
if self.text_splitter is None:
try:
self.text_splitter = SpacyTextSplitter(
pipeline="zh_core_web_sm",
chunk_size=100,
chunk_overlap=100,
)
except Exception:
self.text_splitter = RecursiveCharacterTextSplitter(
chunk_size=100, chunk_overlap=50
)
return loader.load_and_split(self.text_splitter)
data_process() method allows you to pre processing your ways
@register
def data_process(self, documents: List[Document]):
i = 0
for d in documents:
content = d.page_content.replace("\n", "")
soup = BeautifulSoup(content, "html.parser")
for tag in soup(["!doctype", "meta"]):
tag.extract()
documents[i].page_content = soup.get_text()
i += 1
return documents