Files
DB-GPT/pilot/embedding_engine/string_embedding.py
yhjun1026 76745d0e57 feat(editor): ChatExcel
ChatExcel devlop part 1
2023-08-18 10:13:55 +08:00

61 lines
1.8 KiB
Python

from typing import List, Optional
from langchain.schema import Document
from langchain.text_splitter import (
TextSplitter,
SpacyTextSplitter,
RecursiveCharacterTextSplitter,
)
from pilot.embedding_engine import SourceEmbedding, register
class StringEmbedding(SourceEmbedding):
"""string embedding for read string document."""
def __init__(
self,
file_path,
vector_store_config,
source_reader: Optional = None,
text_splitter: Optional[TextSplitter] = None,
):
"""Initialize raw text word path."""
super().__init__(
file_path=file_path,
vector_store_config=vector_store_config,
source_reader=None,
text_splitter=None,
)
self.file_path = file_path
self.vector_store_config = vector_store_config
self.source_reader = source_reader or None
self.text_splitter = text_splitter or None
@register
def read(self):
"""Load from String path."""
metadata = {"source": "raw text"}
docs = [Document(page_content=self.file_path, metadata=metadata)]
if self.text_splitter is None:
try:
self.text_splitter = SpacyTextSplitter(
pipeline="zh_core_web_sm",
chunk_size=500,
chunk_overlap=100,
)
except Exception:
self.text_splitter = RecursiveCharacterTextSplitter(
chunk_size=500, chunk_overlap=100
)
return self.text_splitter.split_documents(docs)
return docs
@register
def data_process(self, documents: List[Document]):
i = 0
for d in documents:
documents[i].page_content = d.page_content.replace("\n", "")
i += 1
return documents